• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Climate change is moving tree populations away from the soil fungi that sustain them

Bioengineer by Bioengineer
May 27, 2024
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As our planet warms, many species are shifting to different locations as their historical habitats become inhospitable. Trees are no exception – many species’ normal ranges are no longer conducive to their health, but their shift to new areas that could better sustain them has been lagging behind those of other plants and animals. Now, scientists show that the reason for this lag might be found belowground. A study published in PNAS on May X, shows that trees, especially those in the far north, may be relocating to soils that don’t have the fungal life to support them.

An ectomycorrhizal mushroom on the forest floor in Patagonia

Credit: SPUN/Mateo Barrenengoa

As our planet warms, many species are shifting to different locations as their historical habitats become inhospitable. Trees are no exception – many species’ normal ranges are no longer conducive to their health, but their shift to new areas that could better sustain them has been lagging behind those of other plants and animals. Now, scientists show that the reason for this lag might be found belowground. A study published in PNAS on May X, shows that trees, especially those in the far north, may be relocating to soils that don’t have the fungal life to support them.

Most plants form belowground partnerships with mycorrhizal fungi, microscopic, filamentous fungi that grow in the soil and connect with plant roots to supply plants with critical nutrients in exchange for carbon. Most large coniferous trees in northern latitudes form relationships with a kind of mycorrhizal fungi called ectomycorrhizal fungi.

“As we examined the future for these symbiotic relationships, we found that 35% of partnerships between trees and fungi that interact with the tree roots would be negatively impacted by climate change,” says lead author Michael Van Nuland, a fungal ecologist at the Society for the Protection of Underground Networks (SPUN).

The trees most at risk of this climate mismatch in North America are those in the pine family, find the authors. Areas of particular concern are the edges of species ranges where trees often face the harshest conditions. Here, the authors discovered that trees with higher survival rate in these locations have more diverse mycorrhizal fungi, a sign that these symbioses may be critical for helping trees withstand the effects of climate change.

“Ectomycorrhizal fungi have a different relationship to climate than ectomycorrhizal trees do,” says co-author Clara Qin, a data scientist at SPUN. “We are finding evidence that the trees have to answer for these differences.”

The study sheds light on  how climate change might be affecting symbioses. “While we expect climate-driven migrations to be limited by abiotic factors like the availability of space at higher latitudes and elevations, we don’t usually account for biotic limitations like the availability of symbiotic partners,” says Qin.

“It’s absolutely vital that we continue to work to understand how climate change is affecting mycorrhizal symbioses,” says Van Nuland. “These relationships underpin all life on Earth – it’s critical that we understand and protect them.”

 

 

***

Download the full paper here.

This research was funded by a National Science Foundation grant awarded to Kai Zhu and Kabir Peay (NSF Awards 1926438, 2244711)

PNAS, Van Nuland et al., “Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts” 

The Society for the Protection of Underground Networks (SPUN) is a scientific research organization with a mission to map and preserve Earth’s fungal networks. In collaboration with researchers and local communities, SPUN is accelerating efforts to protect the underground ecosystems largely absent from conservation and climate agendas. To learn more about SPUN, visit: https://spun.earth/.

Author Contacts:

Michael Van Nuland

Society for the Protection of Underground Networks (SPUN)

[email protected]

 

Clara Qin

Society for the Protection of Underground Networks (SPUN)

[email protected]

 

Kabir Peay

Department of Biology, Stanford University

[email protected]

 

Kai Zhu

Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan

[email protected]

 

Media Contact:

Kelcie Walther

Society for the Protection of Underground Networks (SPUN)

[email protected]

 

 



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2308811121

Method of Research

Data/statistical analysis

Subject of Research

Not applicable

Article Title

Climate mismatches with ectomycorrhizal fungi contribute to migration lag in North American tree range shifts

Article Publication Date

27-May-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Clinical Governance in Hospital Pharmacy Services

August 27, 2025

Nature-Inspired Solutions for Artificial Vision Integration

August 27, 2025

Insights on Chinese Physicians’ Views on PCOS Management

August 27, 2025

Assessing Herbal Medicine for Facial Palsy Reimbursement

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing the Hidden World: A Stunning First Look at the Viruses Within Us

Enhancing Clinical Governance in Hospital Pharmacy Services

Nature-Inspired Solutions for Artificial Vision Integration

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.