• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Clearer vision of the biochemical reaction that allows us to see

Bioengineer by Bioengineer
July 31, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

What makes it possible for our eyes to see? It stems from a reaction that occurs when photons come into contact with a protein in our eyes, called rhodopsin, which adsorbs the photons making up light. In a paper published in EPJ B, Federica Agostini, University Paris-Sud, Orsay, France, and colleagues propose a refined approximation of the equation that describes the effect of this photo-excitation on the building blocks of molecules. Their findings also have implications for other molecules, such as azobenzene, a chemical used in dyes. The incoming photon triggers certain reactions, which can result, over time, in dramatic changes in the properties of the molecule itself. This study was included in a special anniversary issue of EPJ B in honour of Hardy Gross.

Biochemical molecules are so complex that it would require far too much computer power to realistically predict how their molecular structures come to fold in a particular way–and thus acquire their functionalities–after reactions sparked by photon impacts. Instead, physicists use simpler, approximate models to understand the effects of incoming photons on the microscopic components of complex molecules.

Specifically, the authors model the impact of an incoming photon on electrons and nuclei as the electrons approach an excited state. They perform simulations taking into account the specific properties of the building blocks of the molecule, making the approximations slightly closer to the physical reality of this phenomenon than previous work.

To illustrate the effectiveness of their approach, the authors apply it to a simple example. They demonstrate that the atomic nuclei are able to pass through the energy barriers separating stable states by means of a tunnelling process. Nuclei are also able to populate the excited state after incoming photons excite electrons.

###

References

F. Agostini, I.Tavernelli, and G. Ciccotti (2018),

Nuclear Quantum Effects in Electronic (Non)Adiabatic Dynamics,

European Physical Journal B 91:139, DOI: 10.1140/epjb/e2018-90144-3

Media Contact

Elizabeth Hawkins
[email protected]
49-622-148-78130
@SpringerNature

http://www.springer.com

https://www.springer.com/de/ueber-springer/medien/forschungsergebnisse/all-english-research-news/clearer-vision-of-the-biochemical-reaction-that-allows-us-to-see/15990118

Related Journal Article

http://dx.doi.org/10.1140/epjb/e2018-90144-3

Share12Tweet8Share2ShareShareShare2

Related Posts

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

October 15, 2025
blank

Eight Bat Species Frequent Pig Farms in Northern Italy for Commuting and Foraging

October 15, 2025

Unraveling Takotsubo Syndrome: Psychosocial and Clinical Insights

October 15, 2025

Ancient Lead Exposure Influenced the Evolution of the Human Brain

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1247 shares
    Share 498 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Low-Dose Steroids Show Promise in Treating Severe Kidney Inflammation

Assessing Patient Letters’ Effect on Health Literacy

Mount Sinai Studies Reveal Key Molecular Differences Between Living and Postmortem Brain Tissue

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.