• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Clear holographic imaging in turbulent environments

Bioengineer by Bioengineer
October 28, 2023
in Chemistry
Reading Time: 2 mins read
0
Leveraging spatial coherence as a physical prior to guide the training of a deep neural network, TWC-Swin method excels at capturing both local and global image features and eliminates image degradation caused by arbitrary turbulence.
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Holographic imaging has always been challenged by unpredictable distortions in dynamic environments. Traditional deep learning methods often struggle to adapt to diverse scenes due to their reliance on specific data conditions.

Leveraging spatial coherence as a physical prior to guide the training of a deep neural network, TWC-Swin method excels at capturing both local and global image features and eliminates image degradation caused by arbitrary turbulence.

Credit: X. Tong et al., doi 10.1117/1.AP.5.6.066003.

Holographic imaging has always been challenged by unpredictable distortions in dynamic environments. Traditional deep learning methods often struggle to adapt to diverse scenes due to their reliance on specific data conditions.

To tackle this problem, researchers at Zhejiang University delved into the intersection of optics and deep learning, uncovering the key role of physical priors in ensuring the alignment of data and pre-trained models. They explored the impact of spatial coherence and turbulence on holographic imaging and proposed an innovative method, TWC-Swin, to restore high-quality holographic images in the presence of these disturbances. Their research is reported in the Gold Open Access journal Advanced Photonics.

Spatial coherence is a measure of how orderly light waves behave. When light waves are chaotic, holographic images become blurry and noisy, as they carry less information. Maintaining spatial coherence is crucial for clear holographic imaging.

Dynamic environments, like those with oceanic or atmospheric turbulence, introduce variations in the refractive index of the medium. This disrupts the phase correlation of light waves and distorts spatial coherence. Consequently, the holographic image may become blurred, distorted, or even lost.

The researchers at Zhejiang University developed the TWC-Swin method to address these challenges. TWC-Swin, short for “train-with-coherence swin transformer,” leverages spatial coherence as a physical prior to guide the training of a deep neural network. This network, based on the Swin transformer architecture, excels at capturing both local and global image features.

To test their method, the authors designed a light processing system that produced holographic images with varying spatial coherence and turbulence conditions. These holograms were based on natural objects, serving as training and testing data for the neural network. The results demonstrate that TWC-Swin effectively restores holographic images even under low spatial coherence and arbitrary turbulence, surpassing traditional convolutional network-based methods. Furthermore, the method reportedly exhibits strong generalization capabilities, extending its application to unseen scenes not included in the training data.

This research breaks new ground in addressing image degradation in holographic imaging across diverse scenes. By integrating physical principles into deep learning, the study sheds light on a successful synergy between optics and computer science. As the future unfolds, this work paves the way for enhanced holographic imaging, empowering us to see clearly through the turbulence.

For details, read the original article by X. Tong et al., “Harnessing the magic of light: spatial coherence instructed swin transformer for universal holographic imaging,” Adv. Photon. 5(6) 056003 (2023), doi 10.1117/1.AP.5.6.066003.



Journal

Advanced Photonics

DOI

10.1117/1.AP.5.6.066003

Article Title

Harnessing the magic of light: spatial coherence instructed swin transformer for universal holographic imaging

Article Publication Date

25-Oct-2023

Share12Tweet7Share2ShareShareShare1

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tumor Microenvironment Dynamics in Breast Cancer Therapy

Extraction Methods Impact Idesia Polycarpa Oil Quality

Blocking Tumors: PD-L1 siRNA Boosts Immunotherapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.