• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Clarifying the mechanism for suppressing turbulence through ion mass

Bioengineer by Bioengineer
April 24, 2017
in Science News
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Dr. Motoki Nakata

Seeking to further improve plasma performance, from March 7, 2017, plasma experiments utilizing deuterium ions, which have twice the mass of hydrogen, were initiated in the Large Helical Device (LHD) at the National Institute for Fusion Science (NIFS). In numerous plasma experiments being conducted in countries around the world, the use of deuterium is improving the confinement of heat and particles. That is, the phenomenon called "ion mass effect," in which plasma performance is improved, is observed. However, we do not yet understand the detailed physical mechanism of how the increase in ion mass is linked to performance improvement. This has been one of the most important unsolved problems in plasma physics and fusion research from its beginning.

In the plasmas confined in the magnetic field there are various types of waves. In particular conditions those waves grow as time passes, and the so-called "instability" occurs and the plasma becomes turbulent. According to research to date, there has been found to occur a unique flow structure called "zonal flow" that is formed spontaneously in a turbulent plasma. Zonal flows take the stripe structure that flows in the opposite direction to each other, and these flows are known to perform an important role in the suppression of the turbulence. However, there remain many unclarified aspects regarding the conditions by which turbulence and zonal flows are formed. If influences brought about by differences in ion mass can be clarified theoretically, we can accurately predict confinement improvements that are observed in experiments. And because we can link confinement improvement to further enhancement of plasma performance, new developments in research are anticipated.

The research group of Professor Motoki Nakata, through collaborative research with Professor Tomohiko Watanabe of Nagoya University, conducted five-dimensional plasma turbulence simulations utilizing the "Plasma Simulator" at NIFS and the cutting-edge supercomputer "K" at the RIKEN Advanced Institute for Computational Science in order to analyze instabilities (trapped electron modes) caused by electrons that move back and forth along the magnetic field lines and to analyze in detail the turbulence generated from the instability. As a result, we clarified that the influence of the ion mass appeared remarkably in a high-density plasma and that the detailed physical mechanism in which turbulence is suppressed through an effect caused by electron-ion collisions. Further, we discovered that those phenomena exist in both helical and tokamak plasmas. Thus, we were able to clarify the "ion mass effect" broadly observed and one of the important mechanisms to improve plasma performance.

The detailed mechanism that suppresses turbulence is explained below. Turbulence caused due to trapped electron instability weakens the confinement of plasma heat and particles. The collisions among trapped electrons and ions suppress instabilities (suppressing the growth of waves). At a fixed temperature, collisions occur frequently at higher plasma densities. Here, the impacts of collisions in deuterium plasma are remarkable in comparison to hydrogen. As a result, turbulence can be suppressed (Figure 1). Further, we clarified that in the condition in which the instability has weakened, the "zonal flow" becomes stronger and further suppresses the turbulence by grinding large eddies and waves, and eventually improves the confinement of heat and particles (Figure 2).

As has been clarified above, a complete image of turbulence suppression in a plasma with large ion mass may be expressed schematically as in Figure 3. These research results provide fundamental knowledge regarding the complete clarification of the "ion mass effect" which was an unsolved issue for many years in plasma physics and fusion research. Further, the results are anticipated to be beneficial in improving plasma not only in helical devices such as LHD, but also in tokamaks as represented by the International Thermonuclear Experimental Reactor (ITER), which is currently under construction.

###

Vocabulary:

Ion Mass Effect

This is called the hydrogen isotope mass effect. This is a general term for physical influences upon stability and confinement brought about by ion mass.

Five-dimensional plasma turbulence simulation

Turbulence behavior in high-temperature plasma confined in the magnetic field is described mathematically through a dynamical equation in five-dimensional space (the three coordinates of space to which two components of particle velocity are added). The flows of water and air as expressed in three-dimensional equations differ significantly from five-dimensional plasma behaviors in complexity and diversity. Utilizing a supercomputer, we solve the five-dimensional equations at high speed to analyze plasma turbulence phenomena. At NIFS, in joint research with Nagoya University we are advancing in developing the "GKV" simulation code.

Zonal flow

Flow structure that is spontaneously formed in turbulence. The direction of flow reverses at a certain distance. The term "zonal flow" comes from the striped pattern in which flows continuously reverse. The reversed direction of zonal flow grinds eddies carrying heat and particles, and confinement is improved. Zonal flow is also formed in the striped patterns in Jupiter's atmosphere.

Media Contact

Dr. Motoki Nakata
[email protected]
81-572-582-276

http://www.nins.jp/english/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthroughs in In Vivo CAR T Cell Production Transforming Cancer Therapy

September 5, 2025
Pennington Biomedical’s Dr. Steven Heymsfield Honored as LSU Boyd Professor, the University’s Premier Faculty Award

Pennington Biomedical’s Dr. Steven Heymsfield Honored as LSU Boyd Professor, the University’s Premier Faculty Award

September 5, 2025

Androgens’ Impact on Body Composition and Performance

September 5, 2025

Tamibarotene Drives Neuroblastoma Cell Differentiation via PI3K/AKT

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Breakthroughs in In Vivo CAR T Cell Production Transforming Cancer Therapy

Pennington Biomedical’s Dr. Steven Heymsfield Honored as LSU Boyd Professor, the University’s Premier Faculty Award

Androgens’ Impact on Body Composition and Performance

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.