• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Chromosome copying errors pinpointed in embryo development

by
September 6, 2025
in Health
Reading Time: 5 mins read
0
Chromosome copying errors in the 4-cell stage embryo
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new discovery by researchers at the RIKEN Center for Biosystems Dynamics (BDR) in Japan upends decades of assumptions regarding DNA replication. Led by Ichiro Hiratani and colleagues, the experiments published August 28 in Nature show that DNA replication in early embryos is different from what past research has taught, and includes a period of instability that is prone to chromosomal copying errors. As failed pregnancies and developmental disorders are often related to chromosomal abnormalities the findings could impact the field of reproductive medicine, perhaps leading to improved methods of in vitro fertilization (IVF).

During embryogenesis, the initially fertilized egg divides, as do each new set of daughter cells. By the third day after fertilization, an embryo has undergone three divisions and contains 16 cells. Each cell division is accompanied by DNA replication, ensuring that each daughter cell contains a copy of the whole genome. In their new study, the team of RIKEN BDR researchers set out to characterize the nature of the DNA replication process in early-stage embryos. They used their homemade single-cell genomics technique called scRepli-seq and applied it to developing mouse embryos. With this technology, the team was able to take snapshots of single embryonic cell DNA at different times during the DNA-replication periods. What they found contradicted what scientists have assumed about DNA replication in embryos.

“We found multiple specialized types of DNA replication during early mouse embryogenesis, which no one has seen before,” says Hiratani. “In addition, we also found that at certain points, genomic DNA is temporarily unstable and chromosomal aberrations are elevated.”

Textbooks tell us that DNA doesn’t replicate all at once. Instead, different regions of a chromosome are duplicated in a specific sequence. The team’s first discovery was that the replication-timing domains observed in mature cells do not exist until an embryo has 4 cells. This means that unlike any other cells in an eventual body, DNA is replicated uniformly, not sequentially, in 1- and 2-cell embryos.

Each time a part of a chromosome unwinds for replication, regions of DNA unzip forming a structure that looks like a fork in the road. For replication to proceed, the fork must move down the strand of DNA, rezipping copied regions and unzipping the next section. The team’s second discovery was that fork speed is much slower in the 1, 2, and 4-cell stages than after the 8-cell stage of embryogenesis. The 4-cell embryo can now be seen as a transitional stage during which uniform DNA replication becomes sequential, while still showing slow fork movement characteristic of 1- and 2-cell embryos. In contrast, 8-cell embryos are much more similar to mature cells, showing sequential replication and fast fork movement.

Errors in DNA replication in the first few days after fertilization often result in chromosome irregularities, such as extra copies, missing copies, breaks in copies, or incomplete copies. Some of these copying mistakes lead to miscarriage, while others lead to developmental disorders like Down Syndrome, also known as trisomy 21. The team’s third discovery was that the frequency of chromosomal copying errors was temporarily elevated in early-stage embryos, most commonly during the 4-cell stage.

The researchers again used scRepli-seq, this time for detecting chromosome copy number abnormalities. They found that very few errors occurred during the transition between 1- and 2-cell stages or between 8- and 16-cell stages. On the other hand, 13% of cells showed chromosomal abnormalities during the transition between the 4- and 8-cell stages, likely due to copying errors during the 4-cell stage. Further testing suggested that the copying errors at this stage were related to the slow-moving forks.

“Our findings lead to many new questions,” says Hiratani. “For example, are these series of phenomena evolutionarily conserved in other species, including human embryos? And what are the subsequent fates of cells with chromosomal aberrations?” In addition to guiding basic research in the future, this discovery could help fertilization clinics devise better strategies for minimizing the chromosomal abnormalities that are common in the first few days after fertilization.

A new discovery by researchers at the RIKEN Center for Biosystems Dynamics (BDR) in Japan upends decades of assumptions regarding DNA replication. Led by Ichiro Hiratani and colleagues, the experiments published August 28 in Nature show that DNA replication in early embryos is different from what past research has taught, and includes a period of instability that is prone to chromosomal copying errors. As failed pregnancies and developmental disorders are often related to chromosomal abnormalities the findings could impact the field of reproductive medicine, perhaps leading to improved methods of in vitro fertilization (IVF).

During embryogenesis, the initially fertilized egg divides, as do each new set of daughter cells. By the third day after fertilization, an embryo has undergone three divisions and contains 16 cells. Each cell division is accompanied by DNA replication, ensuring that each daughter cell contains a copy of the whole genome. In their new study, the team of RIKEN BDR researchers set out to characterize the nature of the DNA replication process in early-stage embryos. They used their homemade single-cell genomics technique called scRepli-seq and applied it to developing mouse embryos. With this technology, the team was able to take snapshots of single embryonic cell DNA at different times during the DNA-replication periods. What they found contradicted what scientists have assumed about DNA replication in embryos.

“We found multiple specialized types of DNA replication during early mouse embryogenesis, which no one has seen before,” says Hiratani. “In addition, we also found that at certain points, genomic DNA is temporarily unstable and chromosomal aberrations are elevated.”

Textbooks tell us that DNA doesn’t replicate all at once. Instead, different regions of a chromosome are duplicated in a specific sequence. The team’s first discovery was that the replication-timing domains observed in mature cells do not exist until an embryo has 4 cells. This means that unlike any other cells in an eventual body, DNA is replicated uniformly, not sequentially, in 1- and 2-cell embryos.

Each time a part of a chromosome unwinds for replication, regions of DNA unzip forming a structure that looks like a fork in the road. For replication to proceed, the fork must move down the strand of DNA, rezipping copied regions and unzipping the next section. The team’s second discovery was that fork speed is much slower in the 1, 2, and 4-cell stages than after the 8-cell stage of embryogenesis. The 4-cell embryo can now be seen as a transitional stage during which uniform DNA replication becomes sequential, while still showing slow fork movement characteristic of 1- and 2-cell embryos. In contrast, 8-cell embryos are much more similar to mature cells, showing sequential replication and fast fork movement.

Errors in DNA replication in the first few days after fertilization often result in chromosome irregularities, such as extra copies, missing copies, breaks in copies, or incomplete copies. Some of these copying mistakes lead to miscarriage, while others lead to developmental disorders like Down Syndrome, also known as trisomy 21. The team’s third discovery was that the frequency of chromosomal copying errors was temporarily elevated in early-stage embryos, most commonly during the 4-cell stage.

The researchers again used scRepli-seq, this time for detecting chromosome copy number abnormalities. They found that very few errors occurred during the transition between 1- and 2-cell stages or between 8- and 16-cell stages. On the other hand, 13% of cells showed chromosomal abnormalities during the transition between the 4- and 8-cell stages, likely due to copying errors during the 4-cell stage. Further testing suggested that the copying errors at this stage were related to the slow-moving forks.

“Our findings lead to many new questions,” says Hiratani. “For example, are these series of phenomena evolutionarily conserved in other species, including human embryos? And what are the subsequent fates of cells with chromosomal aberrations?” In addition to guiding basic research in the future, this discovery could help fertilization clinics devise better strategies for minimizing the chromosomal abnormalities that are common in the first few days after fertilization.



Journal

Nature

DOI

10.1038/s41586-024-07841-y

Tags: Chromosomal abnormalitiesDNA replication errorsEmbryo developmentReproductive medicineSingle-Cell Genomics
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Pediatric Telemedicine and Medication Delivery in Haiti

October 27, 2025

Comparing Stature Estimation Methods in South Africa

October 27, 2025

Learning by Teaching Boosts Nursing Skills and Knowledge

October 26, 2025

Analyzing Respiratory Mask Fit with Simulations and Tests

October 26, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1284 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Pediatric Telemedicine and Medication Delivery in Haiti

Enhancing Student Success: Deep Learning and Fuzzy Features

Boosting Epsilon-Nean-Zero Nonlinearity in Extreme UV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.