• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cholesterol may help proteins pair up to transmit signals across cell membranes

Bioengineer by Bioengineer
November 4, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Böckmann et al.

Cholesterol may act as a selective glue that binds proteins into paired structures that enable human cells to respond to outside signals, according to a new study in PLOS Computational Biology.

G protein coupled receptors (GPCRs) are a family of proteins found embedded in the outer membranes of eukaryotic cells. GPCRs sense signals outside of a cell, such as hormones or sugars, and transform them into a cellular response. To properly sense and respond to an external signal, evidence suggests, some GPCRs must pair up to form two-protein structures called dimers.

In the new study, Kristyna Pluhackova, Stefan Gahbauer and colleagues at the Friedrich-Alexander University of Erlangen-Nürnberg, Germany, used a GPCR known as chemokine receptor type 4 (CXCR4) to explore GPCR dimer formation at the molecular level. They ran more than 1,000 computer simulations to examine how other molecules that neighbor CXCR4 in the cell membrane, such as cholesterol, might affect the dimer formation.

The simulations revealed that CXCR4 requires cholesterol in order to pair up properly. Cholesterol molecules selectively "glue" specific regions of two CXCR4 molecules to each other, forming a structure that can sense and transmit external signals. Without enough cholesterol in the nearby membrane, CXCR4 proteins can still bind to each other, but these misshapen structures are likely unable to sense signals.

Normally, CXCR4 helps the human immune system function properly. However, this protein also plays a major role in metastatic breast and lung cancer, as well as in AIDS. Scientists also estimate that 40 percent of all prescription drugs act on GPCRs, in general. Therefore, understanding exactly how cholesterol affects GPCR dimer formation could open up new lanes in drug discovery, says study coordinator Rainer Böckmann.

###

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://dx.plos.org/10.1371/journal.pcbi.1005169

Citation: Pluhackova K, Gahbauer S, Kranz F, Wassenaar TA, Böckmann RA (2016) Dynamic Cholesterol-Conditioned Dimerization of the G Protein Coupled Chemokine Receptor Type 4. PLoS Comput Biol 12(11): e1005169. doi:10.1371/journal.pcbi.1005169

Funding: This work was supported by DFG RTG 1962/1 http://www.dfg.de. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Media Contact

Rainer A Böckmann
[email protected]

Home

Share12Tweet7Share2ShareShareShare1

Related Posts

Zidesamtinib Demonstrates Lasting Efficacy in ROS1 TKI-Pretreated NSCLC, Including Cases with CNS Involvement and ROS1 G2032R Mutations

September 7, 2025

Crizotinib Does Not Enhance Disease-Free Survival in Resected Early-Stage ALK-Positive NSCLC

September 7, 2025

FLAURA2 Trial Demonstrates Enhanced Overall Survival with Osimertinib and Chemotherapy in EGFR-Mutated Advanced NSCLC

September 7, 2025

Ivonescimab Combined with Chemotherapy Enhances Progression-Free Survival in EGFR-Positive NSCLC Patients After Third-Generation EGFR-TKI Treatment

September 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    55 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Zidesamtinib Demonstrates Lasting Efficacy in ROS1 TKI-Pretreated NSCLC, Including Cases with CNS Involvement and ROS1 G2032R Mutations

Crizotinib Does Not Enhance Disease-Free Survival in Resected Early-Stage ALK-Positive NSCLC

FLAURA2 Trial Demonstrates Enhanced Overall Survival with Osimertinib and Chemotherapy in EGFR-Mutated Advanced NSCLC

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.