• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 31, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chirality-assisted lateral momentum transfer for bidirectional enantioselective separation

Bioengineer by Bioengineer
May 26, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: by Cheng-Wei Qiu

Light carrying photon momentum can push and pull microparticles through momentum exchange. This momentum exchange progress generates optical forces, either attracts (conventional optical tweezers), pushes (radiation force) or pulls (pulling force) microparticles. A new emerging research interest, optical lateral force which represents the optical force perpendicular to the propagating direction of a non-gradient beam, has attracted much attention. The lateral force can be generated using achiral particles through the conversion of spin and orbital momentum of a circularly polarized beam. It is also predicted that a chiral nanoparticle placed above a surface can generate the lateral force using a plane wave excitation. However, there are few demonstrations of the chirality dependent lateral force, and the particle used in the theoretical prediction are 100 nm which has limited applications. Besides, the theory of optical lateral force on bigger particles (size ~ wavelength) is lacking.

In a new paper published in Light Science & Application, scientists designed an experiment to demonstrate the chirality-dependent optical lateral force. They synthesize microparticles with strong chirality and float them at the interface of air and water. After illuminated with an obliquely incident linearly polarized beam, chiral microparticles with different handedness (left and right) will move to the opposite directions. Interestingly, they find in theory that the optical lateral force could reverse sign with different light polarization and indecent angle, chirality value and particle size. They also developed intriguing models in the perspective of momentum transfer to elaborate this optical lateral force. The reported method and technique will open new avenues for future direct detection and sorting of microparticles with imperceptible chemical differences and inspire the exploration of optical phenomena with light-matter interactions.

The experimental setup is facile, only requiring a s- or p-polarized laser beam and focusing it into an elliptical shape using two cylindrical lenses. The chiral microparticles are floating at the interface of air and water in a microwell fabricated using the soft lithography. This configuration offers many possibilities to probe intriguing optical physics, such as spin-orbital interactions, chirality sensing, etc.

These scientists summarize their work as:

“We design the first experiment of chirality assisted optical lateral force on Mie chiral particles (size ~ wavelength) for enantioselective separation. Recent studies about enantioselective separation and chiral particles focus on the very big particles (geometric optics region, size >> wavelength) due to the limit of particle synthesis procedure and existing theories. We demonstrate, for the first time, robust bidirectional sorting of Mie chiral particles, and the first example of reversible optical lateral forces, which we believe is an essential complement to the community of optics as well as optical manipulations. Our theory studies the dependence of the reversible optical lateral forces with particle size, incident angle, and polarization of light. Compared to previous non-reversal optical lateral force, Mie chiral particles are quite unique and nontrivial that have some intriguing properties. Also, we elaborate the optical lateral force from the perspective of momentum transfer, which is a straightforward way to manifest the optical lateral force.

“Our method is insightful and helpful to the demonstration of extraordinary forces since it rules out the optical gradient forces in conventional optical tweezers. It helps to complement the realm of optical lateral forces in both theory and experiment. The presented technique can be used to contactless monitor the handedness of the chiral particles which exist widely in the drug industry and biomaterials without the testing with chemical or biological methods.” Dr. Yuzhi Shi and Prof. Cheng-Wei Qiu added.

###

Media Contact
Cheng-Wei Qiu
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-0293-0

Tags: Chemistry/Physics/Materials SciencesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025
blank

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025

Cologne Researchers Unveil New Element in the “Nuclear Periodic Table”

October 31, 2025

Molecular-Level Breakthrough in Electrochromism Unveiled

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1294 shares
    Share 517 Tweet 323
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    312 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    202 shares
    Share 81 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    136 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Rural Energy Independence Through Pig Slurry Digestion

Pomegranate Diversity: A Path to Blight Resistance

Comparative Study of Hospital-at-Home in Singapore

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.