• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chinese satellites provide advanced solutions to modeling small particles

Bioengineer by Bioengineer
November 13, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Xiaohu HUANG

The assimilation of aerosol optical depth (AOD) observational data from the Chinese satellite Fengyun-3A (FY-3A) can significantly improve the ability to model aerosol mass, according to Prof. Jinzhong MIN, Vice President at Nanjing University of Information Science and Technology.

Prof. MIN and his team–a group of researchers from the Key Laboratory of Meteorological Disaster of the Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters of Nanjing University of Information Science and Technology–have had their findings published in Advances of Atmospheric Sciences.

"Atmospheric aerosols have significant impacts on the climate and environment. In particular, increasingly severe particulate matter pollution events are threatening public health and ecosystems," says Prof. MIN.

"AOD can be used to test the calibration of satellite retrieval data, and is a key factor in determining the climatic effects of aerosol. However, there is a lack of data from ground-based observations of aerosols in East Asia," he explains. "Thus, it is important to improve the accuracy of atmospheric chemical model predictions by combining satellite observations."

The FY-3A meteorological satellite–a Chinese second-generation polar-orbiting meteorological satellite–has been widely used in meteorology, environmental protection, and other national sectors. It has ultraviolet, visible, infrared, and microwave multispectral instruments, and it has accumulated aerosol optical thickness inversion data since 2008.

In order to study and improve our ability to model and predict aerosol mass, the team adopted the method of three-dimensional variational data assimilation in the Gridpoint Statistical Interpolation analysis system to develop AOD data assimilation systems. Experiments were conducted for a dust storm over East Asia in April 2011. By using the National Meteorology Center's method to simulate the background error covariance of various aerosol variables, the vertical characteristics of each aerosol variable were reflected well.

"The assimilation of satellite AOD observational data can significantly improve our ability to model and predict aerosol mass. The AOD distribution of the analysis field was closer to the observations of the satellite after the assimilation of satellite AOD data. These results suggest that FY-3A satellite aerosol products can be effectively applied in numerical models and dust weather analysis," states Prof. MIN.

"Future work may be needed to assimilate and analyze multispectral, multi-sensor aerosol-related data," he adds.

###

Media Contact

Ling Jin
[email protected]
108-299-5054
@aasjournal

http://english.iap.cas.cn/

Original Source

http://159.226.119.58/aas/EN/news/news171.shtml http://dx.doi.org/10.1007/s00376-018-8075-9

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling Hypospadias: Genetics and Development Insights

August 27, 2025
Dynamic Fusion Model Enhances scRNA-seq Clustering

Dynamic Fusion Model Enhances scRNA-seq Clustering

August 27, 2025

Scientists Unveil First Complete Structure of Botulinum Neurotoxin Complex

August 27, 2025

Unraveling BRCA2’s Complex Transcriptional Landscape with Hybrid-seq

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    149 shares
    Share 60 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Optical Imaging Technique Promises Earlier Detection of Colorectal Cancer

Thioester-Driven RNA Aminoacylation Enables Peptide Synthesis

Exploring Frailty in Lung Transplantation: A Multidimensional Perspective

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.