• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chinese researchers reveal redox sensor protein role in pathogenic mycobacteria

Bioengineer by Bioengineer
February 9, 2018
in Biology
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

As one of the most successful intracellular pathogens, Mycobacterium tuberculosis (Mtb) causes 8 million cases of tuberculosis and 1.3 million deaths worldwide annually. During the course of infection, Mtb is exposed to diverse redox stresses that trigger metabolic and physiological changes.

However, it remained unclear how these stressors are sensed and relayed to the Mtb transcriptional apparatus. Researchers already knew that the ESX-1 secretion system encoding a type VII secretion system is unique to mycobacteria and is required for acute infection, while the DosRS regulon is required for long-term persistence in Mtb.

Furthermore, association of nitric oxide (NO) produced by host cells and upregulation of DosR as well as whiB6 has been documented, but how this happens remained to be elucidated.

New research carried out by scientists with the Center for Emerging Infectious Diseases, Wuhan Institute of Virology (WIV) of the Chinese Academy of Sciences, dissects the cellular role of WhiB6, one of the WhiB redox sensor family proteins, in virulence and intracellular survival of pathogenic mycobacteria.

Their study was published online on August 18 in Cell Reports.

"Using the M. marinum-zebrafish infection model, we provide compelling evidence showing that WhiB6 acts as a finely tuned regulator of the ESX-1 secretion system and DosR regulon with its Fe-S cluster in response to NO," said CHEN Zhenkang, first author of the paper.

As Mtb infection worsens, infected macrophages activate additional macrophages and other immune cells to form a granuloma, which is an organized collection of macrophages composed of mononuclear phagocytes, dendritic cells, as well as T and B lymphocytes.

"Our study reveals that WhiB6 regulation has altered function due to change toward its Fe-S cluster, which enables mycobacteria to establish persistent infection and maintain integrity of the granulomas. We propose a model to explain how WhiB6 plays in different regulatory roles to modulate the development of granulomas," said Dr. CHEN Shiyun, a principal investigator and the corresponding author of the paper.

"Our work is of great interest not only to the specific field of mycobacteriology, but also to the broader readership interested in host-pathogen interaction and related mechanisms," he said.

###

The study, "Mycobacterial WhiB6 differentially regulates ESX-1 and the Dos regulon to modulate granuloma formation and virulence in zebrafish," was supported by grants from the CAS Key Program and National Natural Science Foundation of China (NSFC). Additional authors include Bridgette Cumming and Adrie Steyn from the KwaZulu-Natal Research Institute for Tuberculosis and HIV, South Africa.

Media Contact

CHEN Shiyun
[email protected]

http://english.cas.cn/

Share12Tweet7Share2ShareShareShare1

Related Posts

New Biomarker Linked to Lung Decline in COPD

New Biomarker Linked to Lung Decline in COPD

November 11, 2025
blank

Exploring Male Pregnancy: Insights from Seahorses

November 11, 2025

Nanopores Function as Electrical Gates in Breakthrough Discovery

November 11, 2025

Impact of miR-4289-Loaded Exosomes on Stem Cells

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Internet Use Linked to Social Isolation in Nursing Homes

Reevaluating Medication Overload as a Chronic Issue

Maternal Opioid Treatment Linked to Pregnancy Outcomes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.