• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

China develops world’s brightest VUV free electron laser research facility

Bioengineer by Bioengineer
January 15, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A team of Chinese scientists announced on Jan. 15 that they have developed a new bright VUV FEL light source, the Dalian Coherent Light Source (DCLS), which can deliver world's brightest FEL light in an energy range from 8 to 24 eV, making it unique of the same kind that only operates in the VUV region.

Vacuum Ultra Violet (VUV) light sources are especially useful for sensitive detection of atoms, molecules and clusters. It can also be used to probe valence electronic structures of all kinds of materials.

The development of high gain free electron lasers (FEL) has captured great attentions in the scientific community in the last decade. It can provide by far the brightest light sources from VUV to X-ray region, where conventional laser technology cannot reach.

Recently, a series of high gain FEL light source facilities in the X-ray and soft X-Ray region have been successfully developed in the world (LCLS, USA; SACLA, Japan; FLASH, Germany; and FERMI, Italy), with a few others currently under development. The LINAC based Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center have given scientists large hopes to make new scientific discoveries in many frontier research areas with these facilities.

However, no dedicated high gain VUV FEL light source facility for basic research has been developed in the world thus far. Led by Prof. YANG Xueming (Dalian Institute of Chemical Physics, DICP) and Profs. ZHAO Zhentang and WANG Dong (Shanghai Institute of Applied Source, SINAP), the team of scientists and engineers succeeded in developing the DCLS.

During the last two months, this team has successfully commissioned the new FEL facility operating in both HGHG and SASE. By applying the undulator tapering technology in the HGHG mode, a photon flux of 1.4×1014 photons per pulse was achieved. The project was started in early 2012 and was a close collaboration between research scientists and engineers from DICP and SINAP (Home Institute of the Shanghai Light Source), two CAS institutes.

"VUV FEL light sources have wide applications in the study of basic energy science, chemistry, physics and atmospheric sciences. We expect that the new facility will become a new machine for important scientific discoveries and international scientific collaborations," said YANG Xueming, a member of the CAS.

###

Many institutions in China such as University of Science and Technology of China (USTC), Tsinghua University and Institute of High Energy Physic were involved in the development of this FEL facility. This project was funded by National Natural Science Foundation of China and Chinese Academy of Sciences.

Media Contact

LU Xinyi
[email protected]
86-411-843-79201

http://english.cas.cn/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026
Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.