• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chilling discovery: Study reveals evolution of human cold and menthol sensing protein, offering hope for future non-addictive pain therapies.

by
June 23, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Chronic pain affects millions worldwide, and current treatments often rely on opioids, which carry risks of addiction and overdose. 

ASU Research Team

Credit: ASU/David Rozul

Chronic pain affects millions worldwide, and current treatments often rely on opioids, which carry risks of addiction and overdose. 

Non-addictive alternatives could revolutionize pain management, and new research targeting the human protein which regulates cold sensations, brings scientists closer to developing pain medications that don’t affect body temperature and don’t carry the risks of addiction. 

Research published in Science Advances on June 21, led by Wade Van Horn, professor in Arizona State University’s School of Molecular Sciences and Biodesign Center for Personalized Diagnostics, has uncovered new insights into the main human cold and menthol sensor TRPM8 (transient receptor potential melastatin 8). Using techniques from many fields like biochemistry and biophysics, their study revealed that it was a chemical sensor before it became a cold temperature sensor.

“If we can start to understand how to decouple the chemical sensing of cold from actual cold sensing, in theory, we could make side-effect-free drugs,” said Van Horn whose research focuses on membrane proteins involved in human health and disease. “By understanding the evolutionary history of TRPM8, we hope to contribute to designing better drugs that offer relief without the dangerous side effects associated with current painkillers.” 

When a person touches a metal desk and it feels cold, the human body activates TRPM8. For cancer patients who are on certain kinds of chemotherapeutics, touching a desk can hurt. TRPM8 is also involved in many other types of pain as well, including chronic neuropathic and inflammatory pain. 

By further understanding this specificity of the chemical sensing of cold versus physically sensing cold, scientists can target relief without triggering the temperature regulation side effects often seen in TRPM8 clinical trials for pain treatments. 

In the research, the team used ancestral sequence reconstruction, a time machine for proteins of sorts, compiling the family tree of TRPM8 that exists today and then used that information to determine what the proteins from long-extinct animals might have looked like. 

Using computational methods to resurrect ancestral primate, mammalian, and vertebrate TRPM8, the researchers were able to understand how TRPM8 has changed over hundreds of millions of years by comparing the sequences of current proteins to predict the sequences of their ancient ancestors. Additionally, the combination of lab experiments and computational studies enable the researchers to identify critical places in TRPM8 that allow a more clear understanding of temperature sensing, which can be tested in subsequent experiments. 

“Comparative dynamics analysis of ancestral and human TRPM8 also supports the experimental data and will allow us to identify critical sites in temperature sensing, which we will be testing soon,” said Banu Ozkan, professor in ASU’s Department of Physics, who was involved in the study.

The team then expressed these ancestral TRPM8s in human cells and characterized them using various cellular and electrophysiology techniques.

“Ancestral protein-based studies allow us to focus on the lineage of most interest, such as human TRPM8, to alleviate concerns arising in drug discovery from speciation differences, like in mice and humans,” said first author on the study Dustin Luu, an ASU School of Molecular Sciences doctoral alumnus, and current postdoctoral fellow in ASU’s Biodesign Center for Personalized Diagnostics.

Luu continued: “We discovered that surprisingly menthol sensing appeared way before cold sensing. The difference in appearance and attenuation of these activation modes suggest they are separate and can be disentangled with further research enabling new pain therapies without the adverse side effect in thermal sensing and thermal regulation, which has plagued TRPM8-targeted clinical trials.”

As science continues to uncover the mysteries of our biological mechanisms, studies like this exemplify how evolutionary biology and modern pharmacology can collaborate to address pressing medical needs and improve the quality of life for those suffering from chronic pain.

Additional researchers involved in the study include Banu Ozkan, Nikhil Ramesh, and I. Can Kazan from Arizona State University’s Department of Physics; Karan Shah from ASU’s School of Molecular Sciences; Gourab Lahiri and Miyeko Mana from ASU’s School of Life Sciences. 



Journal

Science Advances

DOI

10.1126/sciadv.adm9228

Method of Research

Computational simulation/modeling

Subject of Research

Cells

Article Title

Evidence that the cold and menthol-sensing functions of the human TRPM8 channel evolved separately

Article Publication Date

21-Jun-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lack of Evidence Supports Ketamine Use in Chronic Pain Management

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.