• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Children’s lung capacity improved in cleaner air

Bioengineer by Bioengineer
February 23, 2023
in Health
Reading Time: 4 mins read
0
Professor Erik Melén: Children’s lung capacity improved in cleaner air
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

As air pollution in Stockholm has decreased, so has the lung capacity of children and adolescents has improved, a new study published in the European Respiratory Journal reports. The researchers from Karolinska Institutet consider the results important, since the lung health of the young greatly affects the risk of their developing chronic lung diseases later in life.

Professor Erik Melén: Children’s lung capacity improved in cleaner air

Credit: Karolinska Institutet

As air pollution in Stockholm has decreased, so has the lung capacity of children and adolescents has improved, a new study published in the European Respiratory Journal reports. The researchers from Karolinska Institutet consider the results important, since the lung health of the young greatly affects the risk of their developing chronic lung diseases later in life.

“Fortunately, we’ve seen a decrease in air pollutants and therefore an increase in air quality in Stockholm over the past 20 years,” says the study’s last author Erik Melén, paediatrician and professor at the Department of Clinical Research and Education, Karolinska Institutet. “We therefore also wanted to examine if the lungs of children also improved during this period.”

The adverse impact of airborne pollutants on children’s lung health are well-documented. According to the researchers, however, how changes in air quality can affect lung development in children and adolescents is less studied.

The study used a cohort from the BAMSE project, in which researchers have been following some 4,000 individuals born between 1994 and 1996. The children were given a questionnaire to answer and spirometric examinations to test their lung function at the ages of 8, 16 and 24.

The researchers estimated, above all, concentrations of airborne pollutants, mostly from traffic, at sites where the participants lived from birth until early adulthood.

In general, air pollution was around 40 per cent lower in Stockholm between 2016 and 2019 than it was between 2002 and 2004. At some locations, such as Hornsgatan on Södermalm, it had decreased by 60 per cent; at others, there was no significant difference in air quality.

“When we compare the individuals living in the areas in which air quality has improved and those in which it hasn’t, we find that lung function improved by a few per cent in the participants in the young adult age bracket,” says the study’s first author Zhebin Yu, postdoc researcher at the Institute of Environmental Medicine, Karolinska Institutet. “But above all we could see a 20 per cent lower risk of having significantly impaired lung function.”

The researchers conclude that lower exposure to airborne pollutants, even at relatively low levels, is associated with improvements in the development of lung function from childhood to early adulthood.

The results are important, says Professor Melén, since optimal lung development during childhood is a powerful determinant of good health in adulthood.

“It is ultimately of great importance since the lung function that children and adolescents develop as they grow up persists into adulthood,” he explains. “If you have reduced lung function as an adult, you run a greater risk of chronic lung diseases like COPD, cardiovascular disease and premature death. So by improving air quality, we reduce the likelihood of children developing chronic diseases later in life.” 

Previous studies from the BAMSE project have shown that lung function growth can both improve and deteriorate over time, and these new results show that air pollution can play an important part in this.

“Airborne pollutants that are by nature persistent are a great worry and our study clearly indicates that efforts to improve air quality have paid off, with quantifiable improvements in child and adolescent health,” says Professor Melén.

The next step is to examine potential advantages of cleaner air for lung diseases like asthma, bronchitis and prodromal COPD and for cardiometabolic diseases such as cardiovascular disease and type 2 diabetes.

The study was conducted in collaboration with SLB-analys, Stockholm South (Söder) General Hospital and Region Stockholm’s Centre for Occupational and Environmental Medicine, and was financed by the European Research Council, the Swedish Research Council, the Swedish Heart-Lung Foundation and the Swedish Research Council for Health, Working Life and Welfare.

VIDEO: To download a filmed interview with professor Erik Melén click here.

Publication: “Associations of improved air quality with lung function growth from childhood to adulthood: The BAMSE study”, Zhebin Yu, Simon Kebede Merid, Tom Bellander, Anna Bergström, Kristina Eneroth, Antonios Georgelis, Jenny Hallberg, Inger Kull, Petter Ljungman, Susanna Klevebro, Massimo Stafoggia, Gang Wang, Göran Pershagen, Olena Gruzieva, Erik Melén, European Respiratory Journal, online 23 February.



Journal

European Respiratory Journal

DOI

10.1183/13993003.01783-2022

Method of Research

Observational study

Subject of Research

People

Article Title

Associations of improved air quality with lung function growth from childhood to adulthood: The BAMSE study

Article Publication Date

23-Feb-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Mayo Clinic Secures Up to $40 Million from ARPA-H to Advance Groundbreaking Air Safety Research

October 2, 2025

Early Onset of Neuroinflammation Observed in Individuals with Down Syndrome

October 2, 2025

Childhood Primary Sjögren’s Syndrome Emerges as Nephrotic Syndrome

October 2, 2025

This researcher aims to explore the reasons why exercise reduces the risk of diseases for a science magazine article.

October 2, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mayo Clinic Secures Up to $40 Million from ARPA-H to Advance Groundbreaking Air Safety Research

Atlas Reveals Testicular Aging Across Species

Early Onset of Neuroinflammation Observed in Individuals with Down Syndrome

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.