• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Chernobyl, three decades on

Bioengineer by Bioengineer
April 26, 2016
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

It was 30 years ago that a meltdown at the V. I. Lenin Nuclear Power Station in the former Soviet Union released radioactive contaminants into the surroundings in northern Ukraine. Airborne contamination from what is now generally termed the Chernobyl disaster spread well beyond the immediate environs of the power plant, and a roughly 1000-square-mile region in Ukraine, Belarus and Russia remains cordoned off, an exclusion zone where human habitation is forbidden.

The radiation spill was a disaster for the environment and its biological inhabitants, but it also created a unique radio-ecological laboratory. University of South Carolina professor of biological sciences Tim Mousseau and longtime collaborator Anders Møller of the CNRS (France) recognized that the Chernobyl Exclusion Zone, which comprises areas with a wide range of background radiation levels, was essentially the first place in the world where it would be possible to study the effects of ionizing radiation on animals living in the wild.

Since the atomic bomb was developed during WWII, laboratory testing has been used to assess toxicological effects of ionizing radiation on life, but Mousseau and Møller wanted to examine the effects on free-ranging organisms. In contrast to their laboratory brethren, wild animals have to forage for food and fend for themselves, likely leaving them more vulnerable to new stressors. With that in mind, Mousseau and Møller began studying the natural inhabitants of the Chernobyl Exclusion Zone in 2000. Their scope expanded after Japan’s Fukushima disaster in 2011, and they have established the USC Chernobyl + Fukushima Initiative, through which they and colleagues have now published more than 90 peer-reviewed papers.

Their work has shown a wide range of damaging effects to wildlife that result from chronic radiation exposure, even when the exposure is at low levels.

“As a starting point for our studies of animal populations, we took our cue from the medical literature–one of the first effects observed was the presence of cataracts in the eyes of people exposed to energy from atomic bombs,” Mousseau says. “And we found that both birds and rodents show elevated frequencies and degree of cataracts in their eyes in the more radioactive areas. Nowadays, we see higher rates of cataracts in flight crews who spend a lot of time in airplanes, which expose them to extra radiation. And people who work in radiology fields are more likely to show increased prevalence and degree of cataract formation in their eyes.”

The team also showed that radiation in Chernobyl diminished brain size, increased incidence of tumor formation, affected fertility and increased the prevalence of developmental abnormalities in birds. And the effects on individuals propagated through groups as well. Populations of barn swallows, for example, which were particularly hard hit in Chernobyl, were lower in areas of higher contamination, and Mousseau thinks they likely would have died off without immigration of new individuals from uncontaminated areas.

“That’s something we tested. Using an isotopic method that shows geographic origin, we compared feathers of barn swallows in the contaminated areas with museum specimens from before the accident and found much more heterogeneity after the accident,” Mousseau says. “Most populations are in some kind of equilibrium, teetering on this balance between the effects of birth and death. If the environment changes for the worse, it pushes them toward extinction, and with all of these negative fitness consequences, that’s what we see: the populations pushed to smaller sizes because the deaths were outweighing the births. But secondarily, in many of these populations what we’re probably seeing is actually a reflection of births, deaths, and immigration. These populations would be locally extinct if it were not for constant immigration.”

And in a recently published paper in Science of the Total Environment, Mousseau and colleagues presented a meta-analysis of oxidative damage resulting from ionizing radiation. Radioactive contamination can have direct effects on, say, chromosomes or DNA, but its energy can also ionize other species in the biological milieu, such as ubiquitous water to form peroxide. The resulting oxidative stress can cause a range of biochemical effects.

“One of the messages coming through our research is that this secondary mechanism through oxidative stress appears to be fairly commonly observed,” Mousseau says. “We have many examples now, both from other people’s research and our own, that shows that there does appear to be some sort of tradeoff between the quantity of antioxidants in the organism’s body and its ability to defend itself against the effects of ionizing radiation.”

The protectiveness of antioxidants in the face of ionizing radiation might part of the explanation for why some populations are less susceptible to radioactive contamination than others, Mousseau adds. “Species that can somehow adjust the use of antioxidants may be using this as a means to reduce genetic damage.”

###

Media Contact

Steven Powell
[email protected]
803-777-1923
@UofSC

http://www.sc.edu/

The post Chernobyl, three decades on appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Unraveling EMT’s Role in Colorectal Cancer Spread

August 2, 2025
Gut γδ T17 Cells Drive Brain Inflammation via STING

Gut γδ T17 Cells Drive Brain Inflammation via STING

August 2, 2025

Agent-Based Framework for Assessing Environmental Exposures

August 2, 2025

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

August 2, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    39 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.