• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemists develop new method for selective binding of proteins

Bioengineer by Bioengineer
November 20, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Münster – Bart Jan Ravoo

A new method of selectively binding proteins to nanoparticles has been described by a team of German and Chinese researchers headed by Prof. Bart Jan Ravoo, a chemist at the "Center for Soft Nanoscience" at the University of Münster (Germany). The nanoparticles automatically recognize specific peptides, i.e. small proteins, and enter into highly selective binding with them. Among the model peptides which the researchers examined were amyloids. Deposits of amyloids, for example, play a major role in Alzheimer's disease, so the researchers are hoping that the mechanism they have discovered might provide a new approach to treating diseases in which such deposits occur. The study has been published in the latest issue of the Nature Chemistry journal.

Producing exact contact surfaces

The interaction between protein molecules or between them and other biomolecules plays a major role in very many physiological processes. In this context, molecular recognition entails the binding of proteins through multiple nanoscale points of contact on the surface of the protein. Typically, very many of these points are involved, resulting in a unique, exact and complementary contact surface. The mechanism these protein molecules bind is therefore described as a "key-and-lock principle". The researchers have now described a method for producing such contact surfaces on nanoparticles, so that selected proteins can be targeted and bound.

Co-assembly and "heteromultivalency"

What is new about the method is that it is based on the principles of co-assembly and so-called heteromultivalency. Co-assembly means that the nanoparticles are not – as is otherwise usual – produced as a result of complex and tailor-made chemical synthesis. Instead, the researchers produce them using a relatively simple method in which two lipid-type ("fatty") components are mixed in water and spontaneously form the nanoparticles required. These particles are adaptive, i.e. they change their inner structure and thus achieve optimum binding to the target protein. "Heteromultivalency" means that the nanoparticles form a very large number of different points of contact which, at the same time, interact with the protein. Following the example of natural physiological processes, a particularly high selectivity thus occurs.

Potential for diagnostics, imaging and active ingredients in medicines

"So far, this principle of heteromultivalency in particular has scarcely been examined in detail or exploited," says Bart Jan Ravoo. "We describe an entirely new approach which will make it possible to develop further synthetic protein binders. This could be considered for use for example in diagnostics or imaging – or as potential active ingredients in medicines." The team of researchers has shown that the nanoparticles bind with amyloids and, as a result, dissolve aggregates of these peptides. The occurrence of amyloid aggregates is closely connected with the development of Alzheimer's. This is why the new method might provide an approach for developing new types of treatment. It has not yet been clarified, however, whether the amyloid aggregates do indeed cause Alzheimer's or are, rather, a result of the disease. Moreover, the new method for dissolving the aggregates has only been tried out in a test tube. Further studies are therefore necessary in order to assess more clearly its potential as an approach to treatment.

The method

The researchers used amphiphilic, water-soluble cyclodextrin and calixarene molecules as co-assembling components for the nano-contact points. They examined the binding of the resultant nanoparticles to the peptides, using for example fluorescence spectroscopy. They used electron microscopy to demonstrate binding to the amyloids.

###

Media Contact

Dr. Christina Heimken
[email protected]
@@WWU_Muenster

http://www.uni-muenster.de

Original Source

https://www.uni-muenster.de/news/view.php?cmdid=9936&lang=en http://dx.doi.org/10.1038/s41557-018-0164-y

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redefining Sex in Science: Three Rigid Frameworks

December 19, 2025
Pneumococcal S Protein Drives Cell Wall Defense

Pneumococcal S Protein Drives Cell Wall Defense

December 19, 2025

RNA-Seq Unveils Gene Expression Differences in Pea Subspp.

December 19, 2025

MHC Gene Variation Drives Lovebird Evolution

December 19, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurse-led Exercise Program Tailored for Breast Cancer Patients

Sarcopenia Linked to Poor Cancer Survival Rates

RETREAT-FRAIL Trial Revolutionizes Hypertension Management in Seniors

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.