• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chemists design new molecule, with oxygen as the star of the show

Bioengineer by Bioengineer
March 29, 2023
in Chemistry
Reading Time: 3 mins read
0
Chiral molecule
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Colorado State University chemists have achieved a new feat in the realm of chemical design and synthesis: They’ve helped create the first example of a synthetic molecule, with an asymmetric oxygen atom as its centerpiece, that remains stable and nonreactive – despite this type of molecule’s tendency in nature to be touchy and short-lived.  

Chiral molecule

Credit: Mihai Popescu/Colorado State University

Colorado State University chemists have achieved a new feat in the realm of chemical design and synthesis: They’ve helped create the first example of a synthetic molecule, with an asymmetric oxygen atom as its centerpiece, that remains stable and nonreactive – despite this type of molecule’s tendency in nature to be touchy and short-lived.  

What makes this feat unique is that the new molecule is chiral, which means it has a non-superimposable mirror image. Chiral molecules, which can be thought of as compounds with “left-” and “right-” handed versions, have long fascinated chemists because while they resemble each other, they can have drastically different properties. For example, limonene is a chiral molecule with two different mirror-image forms; one has the characteristic smell of oranges, and the other smells like lemons. In clinical environments, mirror-image forms of drug molecules can have divergent, even deleterious effects.  

Robert Paton, professor in the Department of Chemistry, and Mihai Popescu, a postdoctoral researcher in Paton’s lab, worked on this project with collaborators at the University of Oxford, and their work was recently published in the journal Nature. Paton and Popescu led theoretical and computational studies that established new design rules for capturing a stable, chiral oxygen atom. This allowed their colleagues at Oxford to pursue the synthesis and analysis of these molecules, which are triaryl oxonium ions that can be isolated at room temperature.  

Chiral molecules with carbon as their centerpiece have been widely explored, but in this study, the researchers used oxygen instead of carbon. No one had ever achieved this before, because oxygen atoms in naturally occurring chiral molecules, which are called oxoniums, tend to flip between their mirror-image forms; this makes them very reactive with their surroundings. This reactivity makes chiral oxonium molecules very difficult to synthesize and isolate in the laboratory.  

With this work, the researchers have gifted molecular designers a new tool in their arsenal, chiral oxonium, much like a new type of building material with potentially unique properties. From drug discovery to materials engineering, the new oxonium could open up a whole new chapter in chemistry by design.   

“The discovery of a fundamentally new example of molecular chirality demonstrates our ability as chemists to design and synthesize new matter based on a computational blueprint,” Paton said. “Given the fundamental importance of chirality in catalysis, medicine and materials, it will be exciting to explore the properties of chiral oxygen atom-containing compounds in future studies.”



Journal

Nature

DOI

10.1038/s41586-023-05719-z

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Control of stereogenic oxygen in a helically chiral oxonium ion

Article Publication Date

15-Mar-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Engineering the Future: How 3D Printing is Revolutionizing Bioactive Implant Design and Materials

Engineering the Future: How 3D Printing is Revolutionizing Bioactive Implant Design and Materials

September 17, 2025

Creating Atropisomeric Macrocyclic Peptides with Quinolines

September 17, 2025

3D-Printed Fuel Cells Set to Energize Future Aerospace Innovations

September 17, 2025

Atomic Magnetometers Usher in a New Era for Electromagnetic Induction Imaging

September 17, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    155 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    67 shares
    Share 27 Tweet 17
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Brain Wave Patterns That Trigger Post-Seizure Wandering

Fetal “Accelerated Growth Trajectory” Linked to Over Fourfold Risk of Early Childhood Obesity: Maternal Metabolic Health Plays Key Role

Analyzing Genetic Traits in Bangladesh’s Aman Rice Varieties

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.