• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Chemists achieve major milestone of synthesis: Remote chiral induction

Bioengineer by Bioengineer
June 18, 2018
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Jin-Quan Yu/Scripps Research

LA JOLLA, CA – June 18, 2018 – Chemists at Scripps Research have addressed one of the most formidable challenges in synthetic chemistry by inventing a method for "enantioselective remote meta-CH activation," which enables the making of chiral molecules that were previously difficult or impossible to synthesize.

The method, reported today in Nature, is likely to be adopted widely for the making of prospective drugs and other chemical products.

"This new method should allow us to explore a large 'chemical space' that had been essentially off-limits," says Jin-Quan Yu, PhD, senior investigator and Frank and Bertha Hupp Professor of Chemistry at Scripps Research.

Chiral molecules are asymmetric, with "right hand" and "left hand" forms. Often only one of these forms (called enantiomers) has the desired biological or chemical activity, while the other is inert or even has unwanted side effects–and most ordinary reactions yield an impure, 50:50 mix of both.

There are methods for turning a symmetric molecule into a chiral one and obtaining pure quantities of one enantiomer rather than the other. However, these methods typically involve the attachment of a reactive cluster of atoms called a functional group to the starting molecule at the point that becomes the center of asymmetry: the so-called chiral center. The new method attaches a new functional group relatively far from the chiral center–a feat previously achievable only by enzymes in living cells. Since the chiral center typically contains another functional group, the resulting chiral molecule ends up with two widely spaced functional groups, potentially conferring unique and potent bioactivity.

"The chiral molecules we can make with this method can be designed to interact with widely spaced binding sites on a target protein, for example," Yu says.

Key to the new method is a specially designed helper molecule, a "transient chiral mediator," based on the organic compound norbornene. It enables the crucial step of attaching the new functional group asymmetrically to an initially symmetric starting compound–far from the chiral center on the molecular backbone but, even so, yielding nearly 100 percent pure quantities of the desired enantiomer.

Yu's team demonstrated the technique by using it for the "remote chiral induction" of benzylamines and phenylethyl amines, broad classes of molecules that form the bases for many modern drugs as well as many biologically active compounds in plant and animal cells. The resulting chiral molecules typically comprised more than 95 percent of the desired enantiomer and less than 5 percent of the unwanted enantiomer.

Yu and his group currently are exploring ways to widen the scope of this strategy to other classes of starting molecule. They are also using their new method to create large libraries of previously inaccessible compounds, which can be screened to discover potential new drugs.

###

The first author of the paper, "Enantioselective Remote Meta-C?H Arylation and Alkylation via a Chiral Transient Mediator," was Hang Shi, a postdoctoral research associate in the Yu laboratory. The other co-authors were Alastair N. Herron, Ying Shao and Qian Shao of Scripps Research.

The study was funded by the National Institutes of Health (grant R01GM102265).

About Scripps Research

Scripps Research is one of the world's preeminent independent, not-for-profit organizations focusing on research in the biomedical sciences. Scripps Research is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academies of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see http://www.scripps.edu.

Media Contact

Madeline McCurry-Schmidt
[email protected]
858-784-9254
@scrippsresearch

http://www.scripps.edu

Share13Tweet7Share2ShareShareShare1

Related Posts

Dopamine D2 Receptors and Heart Cell Death Unveiled

September 12, 2025

Evaluating Rapid Start HIV Treatment Benefits in U.S.

September 12, 2025

Gastroschisis Rates Shift Pre- and Post-COVID

September 12, 2025

East Palestine Train Derailment: Chemical Hazard Insights

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dopamine D2 Receptors and Heart Cell Death Unveiled

Evaluating Rapid Start HIV Treatment Benefits in U.S.

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.