• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemicals associated with oxidative stress may be essential to development

Bioengineer by Bioengineer
July 12, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Daniel Suter/Purdue University

Some level of molecules linked to oxidative stress may be essential to health and development, according to new animal studies.

Reactive molecules derived from molecular oxygen, known as reactive oxygen species (ROS), increase dramatically in the body during times of environmental stress or disease. This stress can result in significant damage to cells and is associated with negative health consequences such as aging, male infertility, degenerative diseases and cancer.

"We think there's an ideal intermediate concentration, but neither extreme is good," said Daniel Suter, a professor of biological sciences at Purdue University.

In a recent study, Suter's team looked at an enzyme that produces ROS in zebrafish embryos to see if it's essential to the development of their nervous systems. Inhibiting this enzyme, NADPH oxidase (Nox), resulted in complications with signaling between the eyes and the brain. The findings were published in The Journal of Neuroscience.

The research team used a drug called celastrol to inhibit Nox activity, which led to defects in the formation of the ganglion cell layer and optic nerve, both of which send signals from the retina of the eye to the brain.

But a drug could affect other enzymes besides Nox, so the researchers needed to confirm their results with another approach. The team turned to CRISPR, a system for modifying genes in living cells and organisms, to mutate Nox genes in the zebrafish embryo.

This method also allowed the researchers to differentiate between different isoforms of Nox. Their findings show that Nox2 could be functionally important to neuronal development, whereas mutations in Nox5 could lead to more general developmental problems.

"This is really a study about the role of ROS as signaling molecules in normal development, but it has key applications for human health," Suter said. "If you take too many antioxidants to treat disorders or injuries, you could go into a range where you get negative effects, because ultimately you need some ROS for normal signaling. We're trying to figure out if there is a certain range that's best."

###

Researchers from the Suter, Deng, and Leung labs in the Department of Biological Sciences; Purdue's Institute for Integrative Neuroscience; Institute of Inflammation, Immunology and Infectious Disease; and Bindley Bioscience Center contributed to this work. The research was supported by grants from the National Science Foundation, Purdue Research Foundation, Office of the Executive Vice President for Research and Partnerships, National Institutes of Health, Purdue Center for Cancer Research, and the International Retinal Research Foundation.

Media Contact

Kayla Zacharias
[email protected]
765-494-9318
@PurdueUnivNews

http://www.purdue.edu/

Related Journal Article

http://dx.doi.org/10.1523/JNEUROSCI.1483-16.2018

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Circular RNAs: Key Players in Skeletal Muscle Development

October 16, 2025
blank

Hypertensive Disorders Linked to Poor Sleep in Midlife

October 16, 2025

Study Finds Sniffer Dogs Require Broader Access to Explosives for Effective Real-World Testing

October 16, 2025

Innovative Approaches to Home-Based Drug Therapy Monitoring

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1250 shares
    Share 499 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Circular RNAs: Key Players in Skeletal Muscle Development

Loneliness Influences Healthcare Use in Rural Seniors

Expanding PRRT2 Syndrome: A Case Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.