• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chemical synthesis: new strategy for skeletal editing on pyridines

Bioengineer by Bioengineer
January 18, 2024
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the field of chemistry, so-called skeletal editing is seen as a method suitable for changing ring-shaped structures precisely by swapping individual atoms. A team of researchers led by Prof. Armido Studer from the Institute of Organic Chemistry at the University of Münster has now introduced a new strategy for converting carbon-nitrogen atom pairs in pyridines – a ring-shaped compound frequently used as a synthesis building block – into carbon-carbon atom pairs. The method has potential in the quest for new drugs and materials which are often based on such molecule rings.

Skeletal editing

Credit: University of Münster – Studer working group

In the field of chemistry, so-called skeletal editing is seen as a method suitable for changing ring-shaped structures precisely by swapping individual atoms. A team of researchers led by Prof. Armido Studer from the Institute of Organic Chemistry at the University of Münster has now introduced a new strategy for converting carbon-nitrogen atom pairs in pyridines – a ring-shaped compound frequently used as a synthesis building block – into carbon-carbon atom pairs. The method has potential in the quest for new drugs and materials which are often based on such molecule rings.

While the ring structure remains intact in the so-called peripheral functionalisation of rings – which involves for example the attachment of groups of atoms – skeletal editing requires the cleavage of robust bonds between carbon atoms or between a carbon atom and another atom within the ring. “In organic synthesis,” says Armido Studer, “this is considered to be particularly challenging – we can imagine it as a kind of surgical procedure.” Up to now, no synthesis strategy was known which could be used to swap complex pyridines by means of skeletal editing. In this new approach, the team produced benzenes and naphthalenes with functional groups which are attached precisely to specific positions. Functional groups are groups of atoms which play a decisive role in the properties of a compound.

“The pyridines which we used are inherently inert, making it difficult to modify them,” explains post-doc Dr. Qiang Cheng. “We first had to change their specific bonding structure – carrying out so-called dearomatization – in order to obtain significantly more reactive intermediates. The subsequent cycloaddition and rearomatization processes ultimately result in the formation of the skeletal-edited compounds.”

Debkanta Bhattacharya, a PhD student in Armido Studer’s team, adds: “Now, by using a so-called one-pot procedure, we can introduce synthetically valuable and medically significant functional groups to specific positions on rings.” Chemists speak of a one-pot reaction to describe a synthesis in which the reagents needed react with one another in a single vessel. The reaction sequence’s mechanism was theoretically analysed by Dr. Christian Mück-Lichtenfeld from the Institute of Organic Chemistry.



Journal

Nature Chemistry

DOI

10.1038/s41557-023-01428-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Skeletal editing of pyridines through atom-pair swap from CN to CC

Article Publication Date

18-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

First-ever observation of the transverse Thomson effect unveiled

August 23, 2025
blank

Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

August 23, 2025

New Molecular-Merged Hypergraph Neural Network Enhances Explainable Predictions of Solvation Gibbs Free Energy

August 22, 2025

Shaping the Future of Dysphagia Diets Through 3D Printing Innovations

August 22, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    125 shares
    Share 50 Tweet 31
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Long Non-Coding RNAs in Hormone-Driven Cancers

Plants and Sound: Allies or Adversaries?

Residual Inflammation’s Impact on CKM Syndrome in Diabetes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.