• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Chemical synthesis: new strategy for skeletal editing on pyridines

Bioengineer by Bioengineer
January 18, 2024
in Chemistry
Reading Time: 2 mins read
0
Skeletal editing
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the field of chemistry, so-called skeletal editing is seen as a method suitable for changing ring-shaped structures precisely by swapping individual atoms. A team of researchers led by Prof. Armido Studer from the Institute of Organic Chemistry at the University of Münster has now introduced a new strategy for converting carbon-nitrogen atom pairs in pyridines – a ring-shaped compound frequently used as a synthesis building block – into carbon-carbon atom pairs. The method has potential in the quest for new drugs and materials which are often based on such molecule rings.

Skeletal editing

Credit: University of Münster – Studer working group

In the field of chemistry, so-called skeletal editing is seen as a method suitable for changing ring-shaped structures precisely by swapping individual atoms. A team of researchers led by Prof. Armido Studer from the Institute of Organic Chemistry at the University of Münster has now introduced a new strategy for converting carbon-nitrogen atom pairs in pyridines – a ring-shaped compound frequently used as a synthesis building block – into carbon-carbon atom pairs. The method has potential in the quest for new drugs and materials which are often based on such molecule rings.

While the ring structure remains intact in the so-called peripheral functionalisation of rings – which involves for example the attachment of groups of atoms – skeletal editing requires the cleavage of robust bonds between carbon atoms or between a carbon atom and another atom within the ring. “In organic synthesis,” says Armido Studer, “this is considered to be particularly challenging – we can imagine it as a kind of surgical procedure.” Up to now, no synthesis strategy was known which could be used to swap complex pyridines by means of skeletal editing. In this new approach, the team produced benzenes and naphthalenes with functional groups which are attached precisely to specific positions. Functional groups are groups of atoms which play a decisive role in the properties of a compound.

“The pyridines which we used are inherently inert, making it difficult to modify them,” explains post-doc Dr. Qiang Cheng. “We first had to change their specific bonding structure – carrying out so-called dearomatization – in order to obtain significantly more reactive intermediates. The subsequent cycloaddition and rearomatization processes ultimately result in the formation of the skeletal-edited compounds.”

Debkanta Bhattacharya, a PhD student in Armido Studer’s team, adds: “Now, by using a so-called one-pot procedure, we can introduce synthetically valuable and medically significant functional groups to specific positions on rings.” Chemists speak of a one-pot reaction to describe a synthesis in which the reagents needed react with one another in a single vessel. The reaction sequence’s mechanism was theoretically analysed by Dr. Christian Mück-Lichtenfeld from the Institute of Organic Chemistry.



Journal

Nature Chemistry

DOI

10.1038/s41557-023-01428-2

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Skeletal editing of pyridines through atom-pair swap from CN to CC

Article Publication Date

18-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.