• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chemical compound promotes healthy aging

Bioengineer by Bioengineer
April 7, 2022
in Biology
Reading Time: 4 mins read
0
Mitochondrial Uncoupling and BAM15
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BATON ROUGE, Louisiana – A recently discovered chemical compound helped elderly mice with obesity lose fat and weight, add muscle and strength, reduce age-related inflammation and increase physical activity, a new study shows.

Mitochondrial Uncoupling and BAM15

Credit: Pennington Biomedical Research Center

BATON ROUGE, Louisiana – A recently discovered chemical compound helped elderly mice with obesity lose fat and weight, add muscle and strength, reduce age-related inflammation and increase physical activity, a new study shows.

The study, published in the Journal of Cachexia, Sarcopenia and Muscle, provides the first evidence that BAM15, a mitochondrial uncoupler, prevents sarcopenic obesity, or age-related muscle loss accompanied by an increase in fat tissue.

“Loss of muscle mass is typically not a concern in younger adults with obesity. However, as people age, that changes. Older adults with sarcopenic obesity suffer accelerated muscle loss. They become less active. As a result, they are at high risk for falls, stroke, heart disease, poorer quality of life and premature death,” said Christopher Axelrod, MS, Director of Pennington Biomedical Research Center’s Integrated Physiology and Molecular Medicine Laboratory.

The weakness and frailty common to sarcopenic obesity are offset in older mice – the equivalent of aged 60-65 in human years – given BAM15. The mice, all of whom had obesity, were fed high-fat diets. Despite that, the mice given BAM15 lost weight and got stronger and more active.

“Typically, when you lose weight, you also lose muscle, and in some circumstances, you can lose a lot of it,” Axelrod said. “In this study, the aged mice increased their muscle mass by an average of 8 percent, their strength by 40 percent, while they lost more than 20 percent of their fat.”

BAM15 works by making the mitochondria, the power plants of the cell, less efficient.  The result is that the mitochondria burn more energy. The researchers are reluctant to describe BAM15 as a miracle drug. More research will be needed to determine its effectiveness for people.

However, the findings about BAM15 have important implications for improving the quality of life for older adults, especially for the rapidly growing number of people with obesity. Preventing, delaying, or reversing the causes and consequences of sarcopenic obesity may allow people to live longer and healthier lives.

“These data highlight that mitochondrial uncouplers may play an important role in improving health span – the time a person enjoys good health – in advanced age,” said Pennington Biomedical Executive Director John Kirwan, Ph.D.

BAM15 improves many of the key determinants of health and aging, including:

  • Removing damaged mitochondria
  • Making more healthy mitochondria, and
  • Reducing “inflammaging,” or age-related inflammation, linked to muscle loss

“Extending health span is even more important than extending lifespan,” Kirwan said. “Suppose you could add 20 or 30 years to a person’s life. What would be the point if their quality of life was awful?”

Axelrod and Kirwan are the study’s corresponding authors. Wagner Dantas, Ph.D., a Postdoctoral Researcher in Kirwan’s Integrated Physiology and Molecular Medicine Laboratory, is the lead author.

This work used core facilities that are supported in part by Pennington Biomedical’s Center for Biomedical Research Excellence through National Institutes of Health awards 5P30GM118430 and 1P20GM135002 and Nutrition Obesity Research Center through National Institutes of Health award P30DK072476.  This research was supported in part by the National Institutes of Health award U54GM104940. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

###

About the Pennington Biomedical Research Center

The Pennington Biomedical Research Center is at the forefront of medical discovery as it relates to understanding the triggers of obesity, diabetes, cardiovascular disease, cancer and dementia.  The Center architected the “Obecity, USA” awareness and advocacy campaign to help solve the obesity epidemic by 2040.  The Center conducts basic, clinical, and population research, and is affiliated with Louisiana State University.  The research enterprise at Pennington Biomedical includes over 480 employees within a network of 40 clinics and research laboratories, and 13 highly specialized core service facilities. Its scientists and physician/scientists are supported by research trainees, lab technicians, nurses, dietitians, and other support personnel.  Pennington Biomedical is located in state-of-the-art research facilities on a 222-acre campus in Baton Rouge, Louisiana.  For more information, see http://www.pbrc.edu.

Pennington Biomedical Research Center

6400 Perkins Road

Baton Rouge, LA 70808



DOI

10.1002/jcsm.12982

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Mitochondrial uncoupling attenuates sarcopenic obesity by enhancing skeletal muscle mitophagy and quality control

Article Publication Date

19-Mar-2022

COI Statement

The authors report no conflicts of interest related to this work.

Share12Tweet8Share2ShareShareShare2

Related Posts

Florida Cane Toad: Complex Spread and Selective Evolution

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026
New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.