• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

‘Charge density wave’ linked to atomic distortions in would-be superconductor

Bioengineer by Bioengineer
May 17, 2023
in Chemistry
Reading Time: 4 mins read
0
schematic of lattice vibration - electric charge interactions
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UPTON, NY—What makes some materials carry current with no resistance? Scientists are trying to unravel the complex characteristics. Harnessing this property, known as superconductivity, could lead to perfectly efficient power lines, ultrafast computers, and a range of energy-saving advances. Understanding these materials when they aren’t superconducting is a key part of the quest to unlock that potential.

schematic of lattice vibration - electric charge interactions

Credit: Brookhaven National Laboratory

UPTON, NY—What makes some materials carry current with no resistance? Scientists are trying to unravel the complex characteristics. Harnessing this property, known as superconductivity, could lead to perfectly efficient power lines, ultrafast computers, and a range of energy-saving advances. Understanding these materials when they aren’t superconducting is a key part of the quest to unlock that potential.

“To solve the problem, we need to understand the many phases of these materials,” said Kazuhiro Fujita, a physicist in the Condensed Matter Physics & Materials Science Department of the U.S. Department of Energy’s Brookhaven National Laboratory. In a new study just published in Physical Review X, Fujita and his colleagues sought to find an explanation for an oddity observed in a phase that coexists with the superconducting phase of a copper-oxide superconductor.

The anomaly was a mysterious disappearance of vibrational energy from the atoms that make up the material’s crystal lattice. “X-rays show that the atoms vibrate in particular ways,” Fujita said. But as the material is cooled, the x-ray studies showed, one mode of the vibrations stops.

“Our study explored the relationship between the lattice structure and the electronic structure of this material to see if we could understand what was going on,” Fujita said.

The Brookhaven team used a tool called a spectroscopic imaging scanning tunneling microscope (SI-STM). By scanning the surface of the layered material with trillionths-of-a-meter precision, they could map the atoms and measure the distances between them—while simultaneously measuring the electric charge at each atomic-scale location.

The measurements were sensitive enough to pick up the average positions of the atoms when they were vibrating—and showed how those positions shifted and became locked in place when the vibrations stopped. They also showed that the anomalous vibrational disappearance was directly linked to the emergence of a “charge density wave”—a modular distribution of charge density in the material.  

The electrons that make up the charge density wave are localized, meaning in fixed positions—and separate from the more mobile electrons that eventually carry the current in the superconducting phase, Fujita explained. These localized electrons form a repeating pattern of higher and lower densities that can be visualized as ladders laying side-by-side (see diagram). It’s the appearance of this pattern that distorts the normal vibrations of the atoms and shifts their positions along the direction of the “rungs.”

“As the temperature goes down and the charge density wave (CDW) emerges, the vibrational energy goes down,” Fujita said. “By measuring both charge distribution and atomic structure simultaneously, you can see how the emergence of the CDW locks the atoms in place.”

“This result implies that, as the atoms vibrate, the charge density wave interacts with the lattice and quenches the lattice. It stops the vibrations and distorts the lattice,” Fujita said.

So that’s one more clue about how two of the characteristics of one phase of a superconducting material couple together. But there’s still a lot to uncover about these promising materials, Fujita said.

“There are many variables. Electrons and the lattice are just two. We have to consider all of these and how they interact with each other to truly understand these materials,” he said.

This work was supported by the DOE Office of Science (BES).

Sidebar: Precision atomic and electronic scanning

The spectroscopic imaging scanning tunneling microscope (SI-STM) used in this study achieves its extreme precision by being completely isolated from its surroundings. It’s situated in a cube of concrete that “floats” on vibration-cushioning springs anchored to the ground separately from the foundation of the Interdisciplinary Science Building on Brookhaven’s campus. An electromagnetically isolating Faraday cage, sound-insulating foam, and three layers of doors provide complete protection from any external vibrations.

“If there is any external vibration, that is going to kill the experiment,” Fujita said. “We need vibration isolation to perform the experiment correctly.”

When making measurements, a needle hovers over the sample at a distance of about one angstrom—one ten-billionth of a meter, or about the diameter of an atom—but not touching the surface. Applying varying voltages allows electrons to tunnel (or jump) from the sample to the tip, creating a current. The strength of the current at each location maps out the material’s electron density while simultaneous spectroscopic imaging captures the sample’s topographical features—including atomic positions and variations caused by impurities and imperfections.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

Related Links

  • Scientific paper: “Periodic Atomic Displacements and Visualization of the Electron-Lattice Interaction in the Cuprate”


Journal

Physical Review X

DOI

10.1103/PhysRevX.13.021025

Article Title

Periodic Atomic Displacements and Visualization of the Electron-Lattice Interaction in the Cuprate

Article Publication Date

17-May-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Rare Einstein Cross Unveiled: Astronomers Detect Fifth Image Uncovering Hidden Dark Matter

September 16, 2025
blank

“Shaking Up Electronics: How ‘Wiggling’ Atoms Could Shrink Devices and Boost Efficiency”

September 16, 2025

Rethinking the Cosmological Constant

September 16, 2025

MIT Geologists Uncover the Fate of Energy Released in Earthquakes

September 16, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

UCalgary Study Reveals Significant Cognitive Benefits of Brain Shunts for Older Adults with Hydrocephalus

Sutter Health Researchers Discover Promising Drug Combinations to Combat Immunotherapy-Resistant Melanoma

Novel Approach Enhances Precision of Machine-Learned Potentials for Catalysis Simulation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.