• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Characterization of magnetic nanovortices simplified

Bioengineer by Bioengineer
December 20, 2016
in Science News
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Magnetic nanovortices, so-called "skyrmions", count among the most promising candidates for the future of information technology. Processors and storage media making use of these tiny structures could one day lead to the further miniaturization of IT devices and improve their energy efficiency significantly. Materials possessing suitable vortices can be identified in particular by their topological charge, an essential characteristic of skyrmions. To determine this property experimentally has up to now been a very laborious process. Physicists from Jülich have now put forward a simpler method which could speed up the screening of suitable materials, using X-rays.

###

Read more on the homepage of the Peter Grünberg Institute, an institute of Forschungszentrum Jülich: http://www.fz-juelich.de/SharedDocs/Meldungen/PGI/PGI-1/EN/2016/2016-10-20-Skyrmion-Characterization.html?nn=721054

Here we provide an overview of more selected papers by Jülich scientists that have been published in journals. These notifications comprise a brief summary as well as data regarding the publication: http://www.fz-juelich.de/portal/EN/Press/PressReleases/notifications/_node.html

Media Contact

Angela Wenzik
[email protected]
49-246-161-6048
@fz_juelich

http://www.fz-juelich.de

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Walking, Cycling, and Swimming Identified as Most Effective Exercises for Knee Osteoarthritis

October 16, 2025

Experts Warn: Impostor Study Participants May Compromise Patient Care

October 16, 2025

Study Reveals How Ants Modify Their Nest Networks to Halt Epidemic Spread

October 16, 2025

Photocatalytic Oxygen-Atom Swap in Oxetanes

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1248 shares
    Share 498 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Walking, Cycling, and Swimming Identified as Most Effective Exercises for Knee Osteoarthritis

Experts Warn: Impostor Study Participants May Compromise Patient Care

Study Reveals How Ants Modify Their Nest Networks to Halt Epidemic Spread

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.