• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chaperones can hold protein in non-equilibrium states

Bioengineer by Bioengineer
March 5, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

After translation, proteins must fold to their functional 3D shape and keep it while under attack by various perturbations: external stress such as temperature changes, wrong interactions with other proteins in the cell, and even deleterious mutations. To ensure that proteins stay functional, the cell uses a particular class of proteins, the chaperones. These are present in all organisms and are among the most abundant proteins in cells, emphasizing how crucial they are to sustain life.

The current view is that the functional 3D shape of a protein is also its most thermodynamically stable state, and that chaperones help proteins reach this state by keeping them from aggregating and by allowing them to escape so-called "kinetic traps" – points where the protein may get "stuck" in a non-functional state. And to do all this, chaperones need energy, which in the cell comes in the form of adenosine triphosphate, or ATP.

The labs of Paolo De Los Rios at EPFL and Pierre Goloubinoff at UNIL, in collaboration with Alessandro Barducci (INSERM – Montpellier) have now shown that the energy from ATP is used by chaperones to actively maintain the proteins they are working on in a non-equilibrium but transiently stable version of the functional form, even under conditions upon which the functional form should not be thermodynamically stable.

"What we found is that chaperones can actively repair and revert the proteins they act upon in a non-equilibrium steady-state," says De Los Rios. "In this state, the proteins are in their native state even if, from an equilibrium thermodynamics perspective, they should not."

The researchers combined theoretical and experimental approaches to prove that chaperones are molecular motors, capable of performing work and extending the stability range of proteins. The results may challenge parts of the prevalent view that evolution has designed amino acid sequences so that the functional state of the protein they belong to is thermodynamically optimal.

"In the presence of chaperones, even thermodynamically sub-optimal proteins might be able to reach their functional form, facilitating evolution in its endless exploration of chemical possibilities," says De Los Rios.

###

Reference

Pierre Goloubinoff, Alberto S. Sassi, Bruno Fauvet, Alessandro Barducci, Paolo De Los Rios. Chaperones convert the energy from ATP into the non-equilibrium stabilisation of native proteins. Nature Chemical Biology 05 March 2018. DOI: 10.1038/s41589-018-0013-8

Media Contact

Nik Papageorgiou
[email protected]
41-216-932-105
@EPFL_en

http://www.epfl.ch/index.en.html

http://dx.doi.org/10.1038/s41589-018-0013-8

Share12Tweet7Share2ShareShareShare1

Related Posts

Breakthrough Theory Unveils New Insights into Molecular Evolution

Breakthrough Theory Unveils New Insights into Molecular Evolution

November 14, 2025
Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

Genotype-Specific Immune Responses in Newcastle Virus-Infected Chickens

November 14, 2025

Sargassum’s Health Under Ocean Acidification and Nitrogen Boost

November 14, 2025

New Microfluidic ‘MISO’ Platform Achieves High-Resolution Cryo-EM Using Minimal Starting Material

November 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    318 shares
    Share 127 Tweet 80
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    210 shares
    Share 84 Tweet 53
  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    142 shares
    Share 57 Tweet 36

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Glycerol-3-Phosphate Drives Lipogenesis in Citrin Deficiency

Tetrafunctional Cyclobutanes Enhance Toughness Through Network Continuity

Reevaluating Uterine Closure Techniques in Cesarean Deliveries: A Call for Change

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.