• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Chaperones can hold protein in non-equilibrium states

Bioengineer by Bioengineer
March 5, 2018
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

After translation, proteins must fold to their functional 3D shape and keep it while under attack by various perturbations: external stress such as temperature changes, wrong interactions with other proteins in the cell, and even deleterious mutations. To ensure that proteins stay functional, the cell uses a particular class of proteins, the chaperones. These are present in all organisms and are among the most abundant proteins in cells, emphasizing how crucial they are to sustain life.

The current view is that the functional 3D shape of a protein is also its most thermodynamically stable state, and that chaperones help proteins reach this state by keeping them from aggregating and by allowing them to escape so-called "kinetic traps" – points where the protein may get "stuck" in a non-functional state. And to do all this, chaperones need energy, which in the cell comes in the form of adenosine triphosphate, or ATP.

The labs of Paolo De Los Rios at EPFL and Pierre Goloubinoff at UNIL, in collaboration with Alessandro Barducci (INSERM – Montpellier) have now shown that the energy from ATP is used by chaperones to actively maintain the proteins they are working on in a non-equilibrium but transiently stable version of the functional form, even under conditions upon which the functional form should not be thermodynamically stable.

"What we found is that chaperones can actively repair and revert the proteins they act upon in a non-equilibrium steady-state," says De Los Rios. "In this state, the proteins are in their native state even if, from an equilibrium thermodynamics perspective, they should not."

The researchers combined theoretical and experimental approaches to prove that chaperones are molecular motors, capable of performing work and extending the stability range of proteins. The results may challenge parts of the prevalent view that evolution has designed amino acid sequences so that the functional state of the protein they belong to is thermodynamically optimal.

"In the presence of chaperones, even thermodynamically sub-optimal proteins might be able to reach their functional form, facilitating evolution in its endless exploration of chemical possibilities," says De Los Rios.

###

Reference

Pierre Goloubinoff, Alberto S. Sassi, Bruno Fauvet, Alessandro Barducci, Paolo De Los Rios. Chaperones convert the energy from ATP into the non-equilibrium stabilisation of native proteins. Nature Chemical Biology 05 March 2018. DOI: 10.1038/s41589-018-0013-8

Media Contact

Nik Papageorgiou
[email protected]
41-216-932-105
@EPFL_en

http://www.epfl.ch/index.en.html

http://dx.doi.org/10.1038/s41589-018-0013-8

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

SNARE Neofunctionalization Driven by Vacuole Retrieval

October 4, 2025
blank

Exploring Shigella Phage Sf14’s tRNA Contributions

October 3, 2025

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025

Scientists Uncover New Intracellular Trafficking Pathway in Plant Cells

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Self-Efficacy Modulates Nurses’ Response to Abusive Supervision

SNARE Neofunctionalization Driven by Vacuole Retrieval

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.