• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Changing “sponginess” of cell nuclei help them decide their future

Bioengineer by Bioengineer
January 1, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered how the sponginess and stickiness of stem cell nuclei controls how they “differentiate” into specialized cells. They found that the nucleus starts solid-like but becomes more fluid-like over time. Less force is transmitted to its inner parts, leaving cells to commit to a certain differentiation pathway. How stem cells choose and keep to differentiation paths continues to be a crucial question for medical science.

Motion of beads in differentiating stem cell nuclei.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have discovered how the sponginess and stickiness of stem cell nuclei controls how they “differentiate” into specialized cells. They found that the nucleus starts solid-like but becomes more fluid-like over time. Less force is transmitted to its inner parts, leaving cells to commit to a certain differentiation pathway. How stem cells choose and keep to differentiation paths continues to be a crucial question for medical science.

Much of our understanding of biological materials and living systems is a biochemical one, an intricate patchwork of pathways connecting a vast array of complex chemicals. However, the rapidly emerging field of mechanobiology takes a different approach, looking at how living materials respond to physical stimuli, like the softness of the inside and outside of a cell. Complex mixtures such as the interior of a cell have both a spongy, solid-like character (elasticity) and a sticky, liquid-like character (viscosity), summing to a more complete description of how materials respond to forces. This is known as viscoelasticity.

The same applies not only to cells but the things they are made of. A team led by Associate Professor Hiromi Miyoshi of Tokyo Metropolitan University have been looking at the nuclei of human mesenchymal stem cells, a type of cell that can mature (or “differentiate”) into a wide range of cell types, including muscle, fat, bone, and cartilage. They introduced tiny, inert beads into nuclei where they were seen to wiggle under the action of thermal energy in the surroundings. The team studied this motion and measured the viscoelasticity of nucleus interiors, a method known as micro-rheology. The technique gives two quantities, the storage and loss moduli, which correspond to the elasticity and viscosity of materials. They focused their attention on nuclei as they differentiated into osteoblasts (bone cells). This was the first time that the viscoelasticity of nuclei was tracked through the whole differentiation process in human stem cells.

As the cells became more differentiated and specialized, the team found that the nuclei became less solid, and more liquid-like. When a solid ball of matter is poked, the force is transmitted directly to its core. This is not the case when it is more viscous than elastic. As it becomes more fluid-like, the nucleus becomes less susceptible to external forces as it differentiates, committing more and more to the differentiation path it has chosen, a balance between what is known as plasticity (responsiveness to change) and homeostasis (resistance to change). Looking at the distribution of DNA in the nucleus, they discovered that much of the change in the viscoelastic nature of the nuclei is to do with the aggregation of chromatin, multi-component structures made of DNA and proteins.

For a long time, it was believed that the aggregation of chromatin had everything to do with the suppression of certain genes. The DNA in chromatin is the instruction booklet for the synthesis of proteins; condensation of chromatin is like sticking pages together to make them unreadable. Now, the team’s findings show that it also serves a completely different purpose, careful tuning how responsive the nucleus is to external forces, particularly in ensuring that it can commit to a certain differentiation path. Their findings are a milestone in understanding the intricate workings of a fascinating system which underpins the development of much of the human body.

This work was supported by JSPS KAKENHI Grant Number JP18H03521, AMED PRIME (18gm5810012h9904), Tokyo Metropolitan Government Advanced Research Grant Number R2-2, and a Grant-in-Aid for Research from the Faculty of Systems Design, Tokyo Metropolitan University.

 



DOI

10.1096/fj.202100536RR

Article Title

Intranuclear mesoscale viscoelastic changes during osteoblastic differentiation of human mesenchymal stem cells

Article Publication Date

25-Nov-2021

Share14Tweet9Share3ShareShareShare2

Related Posts

New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

August 15, 2025
Acidulant and VERDAD N6 Enhance Tteokbokki Quality

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

August 15, 2025

Sparring Saigas Triumph at the 2025 BMC Journals Image Competition

August 15, 2025

“‘Use It or Lose It’: The Island That Transformed a Bird Species”

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Monell Center Researchers Unveil Latest Discoveries at International Consumer Sensory Science Conference

Two Weill Cornell Medicine Scientists Honored with 2025 Pew Awards

Lehigh University’s Martin Harmer Recognized Among the Top 10 Global Science Breakthroughs of 2025 by Falling Walls Foundation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.