• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Changes in gene contribute independently to breast and ovarian cancer

Bioengineer by Bioengineer
January 31, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Defects in a key gene – long thought to drive cancer by turning off the protection afforded by the well-known BRCA genes – spur cancer growth on their own, according to a study led by researchers from NYU Langone Medical Center.

The study gene, known as EMSY, has some of the same functions as BRCA1 and BRCA2, which are known to protect against breast and ovarian cancer when normal. When defective, BRCA genes block the body's self-defense against cancer-causing genetic mistakes.

The new study, published online Jan. 13 in Oncotarget, helps to explain why some women with healthy BRCA1 and BRCA2 genes develop cancer. The findings may also expand treatment options for the roughly 11 percent of women with breast and ovarian cancer and normal BRCA genes, say the study authors.

"Now that we know exactly how changes in EMSY spur cancer cell growth, we can start to design therapies to specifically target that activity and hopefully stop it," says senior author Douglas Levine, MD, director of the Division of Gynecologic Oncology at NYU Langone and its Perlmutter Cancer Center.

"This work also suggests that treatments that work for patients with BRCA1 or BRCA2 mutations might also be effective against EMSY-driven cancers because the disease mechanism is similar," says first study author Petar Jelinic, PhD, a research assistant professor at NYU Langone. "The best way to go rapidly from bench to bedside is to find new ways to use existing treatments."

When normal, EMSY, BRCA1 and BRCA2 give the body's cells instructions to create proteins that help to repair DNA damage that can cause cancer. When those genes are altered, the repair process fails and cancer grows. Overly active EMSY, like mutated BRCA1 or BRCA2, changes those instructions, so that the DNA damage repair process is blocked.

This new study dispels prior theories that EMSY's activation merely turned off the cancer suppression function of BRCA2, says Jelinic.

Earlier work by Levine and others pointed toward EMSY activation as a culprit in breast and ovarian cancer, but had only examined certain parts of the EMSY protein. The new study was the first to evaluate the full-length EMSY protein and to show that it acts independently of BRCA1 or BRCA2.

Furthermore, the research revealed the part of the EMSY protein is changed by an enzyme called protein kinase A. When there is more active EMSY than normal, this enzyme reacts with the EMSY protein to more thoroughly suppress the DNA repair process.

Breast cancer is the second most common cancer among women in the United States, after skin cancer. Ovarian cancer is the fifth leading cause of cancer death among women, according to the National Cancer Institute.

###

The research was supported by the Florence & Marshall Schwid Ovarian Cancer Research Grant from the Foundation for Women's Cancer, the Ann Schreiber Mentored Investigator Award from the Ovarian Cancer Research Fund, Arnold Chavkin and Laura Chang, Department of Defense CDMRP Grant W81XWH-11-2-0230 and NIH/NCI Grant P30CA008748.

Media Contact

Greg Williams
[email protected]
212-404-3533
@NYULMC

http://nyulangone.org/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Electrode Material on Radish Germination

Impact of Electrode Material on Radish Germination

September 14, 2025
blank

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

September 14, 2025

Unraveling Gut Microbiota’s Role in Breast Cancer

September 14, 2025

Estimating Rice Canopy LAI Non-Destructively Across Varieties

September 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    65 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Electrode Material on Radish Germination

Maize Fungal Diseases: Pathogen Diversity in Ethiopia

Unraveling Gut Microbiota’s Role in Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.