• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Century-old food testing method updated to include complex fluid dynamics

Bioengineer by Bioengineer
November 8, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To make better-tasting desserts, this ultrasonic spinning rheometry method includes velocity profiling of complex liquids in food products in order to more accurately capture dynamics inside the material.

IMAGE

Credit: Yoshida et al.


WASHINGTON, D.C., November 8, 2019 — The texture of food, including properties that determine how consumers experience biting and swallowing, is an important part of development of more enjoyable foods. In order to completely understand these properties, better methods and devices for testing are required to capture the motion inside liquid materials, especially in the case of foods that are complex liquids, like gelled desserts.

Testing devices have been improved using different geometries in the testing chamber, and more recently, better results have been achieved using information from rheological testing coupled with results from other tests, such as inner visualization techniques and ultrasonic imaging. But traditional methods have been unable to produce information about time-dependent properties.

In a study published this week in Physics of Fluids, from AIP Publishing, Taiki Yoshida, Yuji Tasaka and Peter Fischer introduce an updated method that can measure linear viscoelasticity and phase lag simultaneously in an opaque liquid. The ultrasonic spinning rheometry method they developed substitutes velocity profiles of food into the equation of motion to capture information about complex rheological properties.

The researchers used a popular Japanese dessert called Fruiche, which includes fruit pulp and whole milk that transforms into a gelled form with an egg carton-shaped structure. The complexity of this liquid includes properties that are hard to measure with traditional rheometry methods because of the effect of shear history, shear banding, shear localization, wall slip and elastic instability.

“Evaluation of food rheology with time dependence is challenging target,” Yoshida said. “Based on the equation of motion, the ultrasonic spinning rheometry method can evaluate instantaneous rheological properties from the measured velocity profiles, so it can present true rheological properties and their time dependence from the perspective of physics of fluids.”

The updated method has applications in chemical engineering for understanding polymerization and dispersion densities, as well as in complex fluids such as clay, with applications in civil engineering and cosmetics. The researchers plan to further advance the method to include more points at which information can be gathered about the invisible properties of complex liquids. They also plan to further develop the industrial aspects of the technique, including in-line rheometry for test samples flowing in a pipe.

###

The article, “Ultrasonic spinning rheometry test on the rheology of gelled food for making better tasting desserts,” is authored by Taiki Yoshida, Yuji Tasaka and Peter Fischer. The article appeared in Physics of Fluids (DOI: 10.1063/1.5122874) and can be accessed at https://aip.scitation.org/doi/10.1063/1.5122874.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See https://aip.scitation.org/journal/phf.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5122874

Tags: Chemistry/Physics/Materials SciencesFood/Food ScienceMolecular PhysicsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

August 21, 2025
Anxiety, Anxiety Medications Linked to Parkinson’s Risk

Anxiety, Anxiety Medications Linked to Parkinson’s Risk

August 21, 2025

Celebrating 30 Years of Nanoimprint Lithography: Pioneering a New Era in Nanomanufacturing

August 21, 2025

Combination Therapy Enhances Treatment Outcomes in Advanced Triple-Negative Breast Cancer

August 21, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

STN1 Drives Pancreatic Cancer Metastasis via ZEB1

Anxiety, Anxiety Medications Linked to Parkinson’s Risk

Celebrating 30 Years of Nanoimprint Lithography: Pioneering a New Era in Nanomanufacturing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.