• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cellular recycling process is key to longer, healthier life

Bioengineer by Bioengineer
May 30, 2018
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: UT Southwestern

DALLAS – May 30, 2018 – Building on two decades of research, investigators at UT Southwestern have determined that "cellular housekeeping" can extend the lifespan and healthspan of mammals.

A study jointly led by Drs. Salwa Sebti and Álvaro Fernández, postdoctoral researchers in the Center for Autophagy Research, found that mice with persistently increased levels of autophagy – the process a cell uses to dispose of unwanted or toxic substances that can harm cellular health – live longer and are healthier. The study, published online today, is found in Nature.

"Specifically, they have about a 10 percent extension in lifespan and are less likely to develop age-related spontaneous cancers and age-related pathological changes in the heart and the kidney," said Dr. Beth Levine, Director of the Center for Autophagy Research at UT Southwestern.

Twenty years ago, Dr. Levine and her colleagues discovered beclin 1 – a key gene in the biological process of autophagy. The group's research has since shown that autophagy is important in many aspects of human health, such as preventing neurodegenerative diseases, combating cancer, and fighting infection.

In 2003, Dr. Levine's team found that the genetic machinery required for autophagy was essential for the lifespan extension observed in long-lived mutant roundworms.

"Since then, it has become overwhelmingly clear that autophagy is an important mechanism necessary for the extended lifespan that is observed when model organisms are treated with certain drugs or when they have mutations in certain signaling pathways," said Dr. Levine, also a Professor of Internal Medicine and Microbiology who holds the Charles Cameron Sprague Distinguished Chair in Biomedical Science. "The body's natural ability to perform autophagy declines with aging, which likely contributes to the aging process itself."

Yet a crucial question remained unanswered: Is increased autophagy throughout mammalian life safe and beneficial? In other words, can autophagy extend lifespan and improve healthspan?

To answer this question, Dr. Levine and her UTSW colleagues created a genetically engineered mouse that had persistently increased levels of autophagy. The researchers made a mutation in the autophagy protein Beclin 1 that decreases its binding to another protein, Bcl-2, which normally inhibits Beclin 1's function in autophagy. As the researchers expected, these mice had higher levels of autophagy from birth in all of their organs.

Last summer, Dr. Congcong He, a former trainee in Dr. Levine's laboratory at UT Southwestern who originally made the mice, reported in PLOS Genetics that these mice are partially protected against mouse models of Alzheimer's-like disease. The most recent findings now show that mice with increased cellular housekeeping live longer, healthier lives.

Additionally, in collaboration with Dr. Ming Chang Hu, Associate Professor of Internal Medicine and Pediatrics who holds the Makoto Kuro-o Professorship in Bone and Kidney Research, and Dr. Orson Moe, Professor of Internal Medicine and Physiology who holds The Charles Pak Distinguished Chair in Mineral Metabolism and the Donald W. Seldin Professorship in Clinical Investigation, the Nature study also shows that the mice with increased autophagy are protected from the early death that occurs when the anti-aging hormone klotho is lacking.

"These studies have important implications for human health and for the development of drugs to improve it," said Dr. Levine, who is also a Howard Hughes Medical Institute Investigator. "They show that strategies to increase the cellular housekeeping pathway of autophagy may retard aging and aging-related diseases. The results suggest that it should be safe to increase autophagy on a chronic basis to treat diseases such as neurodegeneration. Furthermore, they reveal a specific target for developing drugs that increase autophagy – namely the disruption of Beclin 1 binding to Bcl-2."

Dr. Levine's group is collaborating with Dr. Jef De Brabander, Professor of Biochemistry and a member of the Harold C. Simmons Comprehensive Cancer Center who holds the Julie and Louis Beecherl, Jr. Chair in Medical Science, and his team to synthesize such drugs. Based on the results reported in the Nature study, drugs acting through this mechanism might be expected to improve the health and prolong the lifespan of human beings.

###

Other UT Southwestern researchers involved in this study are Dr. Yongjie Wei, Assistant Professor of Internal Medicine; Zhongju Zou, research specialist; Mingjun Shi, senior research associate; Kathryn L. McMillan, lab manager and research technician II; Tabitha Ting, graduate student; Dr. Yang Liu, postdoctoral fellow; Dr. Wei-Chung Chiang and Dr. Gabriele G. Schiattarella, postdoctoral researchers; and Dr. Denise K. Marciano, Assistant Professor of Internal Medicine. Dr. Govind Bhagat of Columbia University Medical Center and Dr. He – now with Northwestern University Feinberg School of Medicine – also contributed.

The research was supported by grants from the National Institutes of Health, the Cancer Prevention and Research Institute of Texas, and the Fondation Leducq.

Dr. Levine is a scientific founder of Casma Therapeutics Inc., a recently established biotechnology company that is working to develop drugs based on the autophagy process.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 16 members of the National Academy of Medicine, and 15 Howard Hughes Medical Institute Investigators. The faculty of more than 2,700 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 100,000 hospitalized patients, 600,000 emergency room cases, and oversee approximately 2.2 million outpatient visits a year.

Media Contact

Deborah Wormser
[email protected]
@UTSWNews

http://www.swmed.edu

Original Source

https://www.utsouthwestern.edu/newsroom/articles/year-2018/cellular-recycling.html

Share12Tweet7Share2ShareShareShare1

Related Posts

Synthetic Image Learning: A New Federated Alternative

October 23, 2025

Filipino Seniors’ Dietary Patterns and Influencing Factors

October 23, 2025

Almost 20% of Urinary Tract Infections Traced to Contaminated Meat, Study Finds

October 23, 2025

Understanding Parents’ Needs in Pediatric Emergency Care

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1276 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    162 shares
    Share 65 Tweet 41
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Synthetic Image Learning: A New Federated Alternative

Filipino Seniors’ Dietary Patterns and Influencing Factors

FAU Engineering Innovators Achieve Significant Advances in Gait Analysis Technology

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.