• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cellular cleanup! Atg40 folds the endoplasmic reticulum to facilitate its autophagy

Bioengineer by Bioengineer
July 22, 2020
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Nature Communications, Tokyo Tech

The endoplasmic reticulum (ER) is an important part of eukaryotic cells (the type of cells that make up every living thing other than bacteria or viruses, including humans). They are a mass of tubes connected to the nucleus of the cell; the production of both proteins and lipids occur in the networks of the ER. For this organelle to properly function, cells routinely degrade portions of the ER so that it can be renewed. This process is called ER autophagy, or ER-phagy, where a structure called an “isolation membrane” expands and closes up to form an “autophagosome.” The closure isolates various cellular materials including the ER within the autophagosome, which then transports the waste away for degradation.

While this process can be random, scientists have uncovered “autophagy receptors” that bind specifically to certain targets and interact with a group of proteins called Atg8, located on the isolation membrane. This interaction allows cells to target specific parts for degradation. In yeast, an organism commonly used for biological research, scientists have identified the protein Atg40 as an ER-phagy receptor, and also found that parts of its structure share similarities to a group of proteins called DP1/Yop1 (reticulon-like proteins), which “curves” the ER membranes into shape and maintains their tubular structures.

“Our previous work reveals that Atg40 is important for ER-phagy, but we actually know very little about how the process works,” explained Dr. Hitoshi Nakatogawa of the Tokyo Tech, who led a team of scientists in research that investigated the mechanisms of Atg40 involvement in ER-phagy. “Because degradation of ER is so important for proper cellular function, gaining a better understanding of ER-phagy will improve basic biological knowledge.”

Their experiments with yeast, the findings of which are published in Nature Communications, showed that Atg40 is important for “curving and folding” the ER membrane, and therefore has a similar function to DP1/Yop1, explaining their structural similarities. Atg40 is also necessary for ER-phagy, specifically being involved in breaking up the ER membrane so that it can be imbibed by autophagosomes. Researchers demonstrated that during this folding and fragmentation of the ER, Atg40 forms a protein assembly (cluster of proteins) by interacting with Atg8 located specifically at points of contact between the ER and the isolation membrane (as shown in Figure 1). In other words, Atg40 does not randomly or always remodel ER structure; it does so only for the ER parts that will be degraded.

Regarding the significance of these results, Dr. Nakatogawa commented: “What I find particular exciting is the insight we gained on a crucial part of how cells work, how they deal with waste or get rid of abnormal cell parts. Our work doesn’t just have implications for ER-phagy though, it can also potentially tell us something about how other organelles, like the nucleus or mitochondria, are degraded.”

Besides just being valuable basic research, these findings also have significant practical applications. Knowing the mechanisms of organelle degradation might help the development of drugs that target this process if it breaks down. This presents potential attractive solutions for diseases involving the malfunction of ER such as sensory neuropathy.

###

Media Contact
Kazuhide Hasegawa
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2020/047428.html

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-17163-y

Tags: BiologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Examining Gender Disparities in COVID-19 Mortality

October 15, 2025
blank

Epigenetic “Scars”: How Childhood Trauma Leaves Lasting Marks on Our Genes

October 15, 2025

IFIT2–IFIT3 Complex Blocks Viral mRNA Translation

October 15, 2025

SiNRX1’s Role in Foxtail Millet Drought Resistance

October 15, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1244 shares
    Share 497 Tweet 311
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Oligomers Create Stable RNA G-Quadruplex to Halt Translation

Tumor-Infiltrating Lymphocytes Predict Breast Cancer Outcomes

China’s Demand Strains Brazil’s Land and Water Resources

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.