• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cells pumping iron to prevent anemia

Bioengineer by Bioengineer
May 30, 2017
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Kyoto University

Kyoto, Japan — Maintaining a good balance of iron in the body is necessary for health: too little can lead to anemia, but too much can cause debilitating disorders such as hemochromatosis.

The uptake and metabolism of iron in the body is one of the most tightly-controlled systems in mammals. Iron 'regulation' occurs at multiple levels, from controlling gene expression to degrees of protein synthesis, but some key factors have yet to be uncovered.

As described recently in Cell Reports, Kyoto University researchers have now identified a specific gene — initially known to prevent autoimmune diseases — as a key regulator in iron uptake.

"We found previously that when mice lack the gene Regnase-1 they suffer from severe autoimmune diseases and anemia," explains first author Masanori Yoshinaga.

"At first, we assumed that anemia was a secondary effect, but after detailed analysis we found that the two symptoms develop independently."

Continued study of mice with a Regnase-1 mutation revealed a functional defect in the principle site for iron absorption in the body, the duodenum, which is the first section of the small intestine, coming directly after the stomach.

"The next step was to find the role of Regnase-1 in iron-uptake maintenance. We started by looking at the most important iron-uptake gene, Transferrin Receptor 1, or TfR1," continues Yoshinaga.

"Our results showed that Regnase-1 degrades the mRNA of TfR1, thereby inhibiting the synthesis of the TfR1 protein, and additionally that it likely regulates other important iron-controlling genes."

"Further analysis of Regnase-1 in iron-related homeostasis," concludes team leader Osamu Takeuchi, "may provide insight into the mechanisms causing anemia and other iron-related disorders, perhaps eventually leading to new methods of treatment."

###

The paper "Regnase-1 maintains iron homeostasis via the degradation of transferrin receptor 1 and prolyl hydroxylase domain-containing protein 3 mRNAs" appeared in Cell Reports on 24 May 2017, with doi: 10.1016/j.celrep.2017.05.009

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

Media Contact

Raymond Kunikane Terhune
[email protected]
81-757-535-728
@KyotoU_News

http://www.kyoto-u.ac.jp/en

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Rutgers Study Suggests Nicotine Pouches Could Lead to Reduced Tobacco Harm

September 8, 2025

Duke-NUS Study Uncovers How Dengue Virus Alters Immune System, Impacting Vaccine Efficacy

September 8, 2025

Impact of GLP-1 Receptor Agonists on Cardiovascular and Kidney Outcomes Across BMI Categories in Type 2 Diabetes

September 8, 2025

New Clinical Study Advances Understanding of Mesothelioma and Unveils Potential Treatment Pathways

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Doping CuO with Sr Enhances Supercapacitor Performance

Rutgers Study Suggests Nicotine Pouches Could Lead to Reduced Tobacco Harm

Duke-NUS Study Uncovers How Dengue Virus Alters Immune System, Impacting Vaccine Efficacy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.