• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cells must age for muscles to regenerate in muscle-degenerating diseases

Bioengineer by Bioengineer
March 31, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Exercise and a cell-aging drug could help cases of chronic myopathy

IMAGE

Credit: Yuki Saito et al., Nature Communications. February 14, 2020

Exercise can only improve strength in muscle-degenerating diseases when a specific type of muscle cell ages, report a Hokkaido University researcher and colleagues with Sapporo Medical University in Japan. Their findings utilizing mice models were published in the journal Nature Communications.

Idiopathic inflammatory myopathies are rare diseases that cause muscle weakness, inflammation, and fibrosis. In addition to drugs, exercise can be powerful therapy for some patients. But in cases of chronic inflammatory myopathy, exercise can actually induce inflammation and fibrosis in muscles. Scientists have been wanting to understand why exercise benefits some myopathies but not others.

Takako S. Chikenji of Hokkaido University collaborated with Yuki Saito and Mineko Fujimiya of Sapporo Medical University in Japan to investigate why a type of muscle cell, called fibro-adipogenic progenitors (FAPs), responds differently to physical exercise depending on the type of myopathy. These cells are a key regulator of the muscle stem cells needed for regeneration.

They investigated what happens when mice with myopathy exercise. In mice with acute muscle injury which simulates idiopathic inflammatory myopathy, they found FAPs initially increased but then returned to pre-damage levels after seven days. These FAPs eventually died and were cleared by cell-eating immune cells called phagocytes. In mice with chronic inflammatory myopathy, FAPs continued to proliferate for 14 days and were resistant to cell death and clearance by immune cells.

Investigating further, the team found that FAPs in mice with acute muscle injury showed strong signs of aging after exercise while FAPs in mice with chronic inflammatory myopathy didn’t. They also found that normal FAPs induced regeneration of muscle cells after acute muscle injury while FAPs lacking a cellular aging-inducing factor didn’t. These results together showed the aging of FAPs after exercise is necessary to establish a state of regenerative inflammation that induces muscle regeneration.

Moreover, the combination of exercise and administrating drugs which induce cellular aging restored FAP aging and improved muscle function and regeneration in mice with chronic inflammatory myopathy.

“Our findings demonstrate that exercise leads to muscle degeneration in chronic inflammatory myopathy because FAPs accumulate when they fail to age,” says Takako S. Chikenji. “Pharmacological induction of FAP senescence dramatically improved the therapeutic effects of exercise in mice with chronic myopathy. Further research is needed to investigate whether this strategy could be used to treat this condition in humans.”

###

Media Contact
Naoki Namba
[email protected]

Original Source

https://www.global.hokudai.ac.jp/blog/cells-must-age-for-muscles-to-regenerate-in-muscle-degenerating-diseases/

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-14734-x

Tags: BiologyBiomechanics/BiophysicsCell BiologyMolecular BiologyMusculatureRehabilitation/Prosthetics/Plastic Surgery
Share12Tweet8Share2ShareShareShare2

Related Posts

Cochrane Review Confirms Safety and Effectiveness of RSV Vaccines

September 29, 2025

Cochrane Review Confirms RSV Vaccines Are Safe and Effective

September 29, 2025

Addressing Frailty and Polypharmacy in Elderly Home Care

September 29, 2025

Unplanned, Premature Births Outside Hospital Present Critical Challenges for Emergency Responders

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    73 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cochrane Review Confirms Safety and Effectiveness of RSV Vaccines

Cochrane Review Confirms RSV Vaccines Are Safe and Effective

Addressing Frailty and Polypharmacy in Elderly Home Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.