• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

Cell cycle proteins help immune cells trap microbes with nets made of DNA

Bioengineer.org by Bioengineer.org
January 30, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Volker Brinkmann

In your bloodstream, there are immune cells called neutrophils that, when faced with a pathogenic threat, will expel their DNA like a net to contain it. These DNA snares are called neutrophil extracellular traps or NETs. Researchers from Germany and the United States describe an important step in how these NETs are released and how they stop a fungus from establishing an infection in mice and human cells in the journal Developmental Cell.

"This is basically a type of beneficial cell suicide," says first author Borko Amulic, a postdoc in the lab of Arturo Zychlinsky at the Max Planck Institute for Infection Biology and a newly appointed Lecturer at the University of Bristol. "When neutrophils get overwhelmed, when they can no longer deal with a microbial threat by just engulfing it, that's when the NETs are released."

Once a neutrophil is forced induced to release its NETs, it anchors itself in the tissue and breaks down its nuclear envelope: the barrier between the nuclear DNA and the rest of the cell. The researchers were intrigued by this because, normally, cells only break down their nuclear envelope before they divide. Zychlinsky, Amulic, and colleagues hypothesized that neutrophils were using the same cell cycle proteins used for cell division to release the NETs.

To test this, the researchers inhibited the cell cycle proteins in mouse neutrophils so that fewer NETs were released and found that mice were no longer able to clear fungal infections. Then, they observed human brains with fungal infections and confirmed that our neutrophils are also using cell cycle proteins.

"The ultimate goal for this research is to interfere clinically, either when too few or too many NETs are being produced," says Amulic. "Also, this is just a really fascinating cell biological phenomenon."

###

This work was supported by the Max Planck Society and the European Molecular Biology Organization (EMBO).

Developmental Cell, Amulic et al.: "Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps" http://www.cell.com/developmental-cell/fulltext/S1534-5807(17)30826-2

Developmental Cell (@Dev_Cell), published by Cell Press, is a bimonthly, cross-disciplinary journal that brings together the fields of cell biology and developmental biology. Articles provide new biological insight of cell proliferation, intracellular targeting, cell polarity, membrane traffic, cell migration, stem cell biology, chromatin regulation and function, differentiation, morphogenesis and biomechanics, and regeneration and cellular homeostasis. Visit: http://www.cell.com/developmental-cell. To receive Cell Press media alerts, contact [email protected]

Media Contact

Cara Cavanaugh
[email protected]
617-335-6270
@CellPressNews

http://www.cellpress.com

Related Journal Article

http://dx.doi.org/10.1016/j.devcel.2017.10.013

Share14Tweet8Share2ShareShareShare2

Related Posts

Exploring Fire Safety and Conductivity in Lithium-Ion Electrolytes

Exploring Fire Safety and Conductivity in Lithium-Ion Electrolytes

October 13, 2025

Targeting Spreading Depolarization: A New Migraine Therapy

October 13, 2025

Unlocking mRNA Markers via QNome Nanopore Sequencing

October 13, 2025

Facial Thickness in Turkish Youth Linked to BMI

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1229 shares
    Share 491 Tweet 307
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    90 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring Fire Safety and Conductivity in Lithium-Ion Electrolytes

Targeting Spreading Depolarization: A New Migraine Therapy

Unlocking mRNA Markers via QNome Nanopore Sequencing

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.