• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cell cultures not as stable as you’d think

Bioengineer by Bioengineer
February 8, 2022
in Biology
Reading Time: 3 mins read
0
Cell cultures not as stable as you'd think
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Culture environments of different cell types growing in culture vessels or Petri dishes vary significantly from each other and from conditions in the living body, potentially driving the “reproducibility crisis” in biomedical research, according to a team of KAUST bioscientists. This conclusion follows constant monitoring of three different cell types, including human pluripotent stem cells, over three days. This and further research could lead to improved standards and protocols for cell culture experiments in the laboratory.

Cell cultures not as stable as you'd think

Credit: © 2022 KAUST.

Culture environments of different cell types growing in culture vessels or Petri dishes vary significantly from each other and from conditions in the living body, potentially driving the “reproducibility crisis” in biomedical research, according to a team of KAUST bioscientists. This conclusion follows constant monitoring of three different cell types, including human pluripotent stem cells, over three days. This and further research could lead to improved standards and protocols for cell culture experiments in the laboratory.

 

The inability to monitor and control cell culture conditions has made it very difficult for researchers to reproduce experiments, which is crucial for confirming the significance and accuracy of scientific findings.

“We are now studying the functional consequences of cell culture environmental instability by analyzing gene expression and epigenetic and metabolic changes in cells grown under well-defined conditions,” says Li.

 

The team’s future research will aim to develop recommendations on how to improve culture conditions for different cell types. Meanwhile, the researchers suggest that amendments to existing batch culture protocols — by reducing cell density, for example, or adapting culture vessels — could help limit the changes to within acceptable ranges. Commercially available systems could also be used to continuously dilute cultures with fresh medium or automatically add gasses or adjust medium acidity to maintain cellular environments.

A team of researchers led by marine ecologist Carlos Duarte and bioscientist Mo Li monitored the environment of cells grown in flasks placed in a controlled incubator — a standard cell culture method called batch culture — over a three-day period. Three different cell types were used: human pluripotent stem cells, a cancer cell line and a type of white blood cell. Optical sensors were attached to some of the flasks belonging to each cell type in order to monitor changes in dissolved oxygen and carbon dioxide levels as the cells grew. Other flasks were removed every eight hours and then discarded after measuring cell growth rates and culture acidity.

 

“We were surprised to find the batch-cultured cell environments were many magnitudes different from their native environments in the human body,” says Ph.D. student Samhan Alsolami.

 

The extent of changes that occurred in the cultures varied with cell type, but generally, as cell density increased, the amount of oxygen dissolved in the cell medium decreased while carbon dioxide increased. This in turn increased the acidity of the surrounding medium. The different extent to which these changes occurred in each cell type is likely due to differences in cell growth rates and metabolism. These changes will affect cell processes.

 

“Scientists are still discovering the factors that contribute to maintaining an ideal cell culture environment in order to accurately mimic the human body,” explains research scientist Shannon Klein. “But it’s not an easy task and requires parallel advances in technology and engineering,” she says.



Journal

Communications Biology

DOI

10.1038/s42003-022-03065-w

Method of Research

Observational study

Subject of Research

Cells

Article Title

In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture

Article Publication Date

8-Feb-2022

Share16Tweet10Share3ShareShareShare2

Related Posts

Gender Disparities in Obesity and OSA Complications

Gender Disparities in Obesity and OSA Complications

October 17, 2025
Justicia gendarussa: New Insights on Pollination Strategies

Justicia gendarussa: New Insights on Pollination Strategies

October 17, 2025

Integrative Methods for Epimedium Species Classification

October 17, 2025

AI Revolutionizes Biology and Medicine

October 17, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1257 shares
    Share 502 Tweet 314
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    221 shares
    Share 88 Tweet 55
  • New Study Reveals the Science Behind Exercise and Weight Loss

    107 shares
    Share 43 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gender Disparities in Obesity and OSA Complications

Lower SNCA Levels in Parkinson’s Blood After Neutrophil Adjustment

Eighty-Five Years of Big Tree History United in One Place for the First Time

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.