• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cell cultures go for the gold

Bioengineer by Bioengineer
June 8, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: BioServe

A wide variety of research relies on growing cells in culture on Earth, but handling these cells is challenging. With better techniques, scientists hope to reduce loss of cells from culture media, create cultures in specific shapes, and improve retrieval of cells for analysis – all of which would improve experiment results. Handling cells in microgravity poses even greater challenges, and with ongoing cell investigations aboard the International Space Station, optimizing handling techniques is critical.

The Magnetic 3D Cell Culturing investigation applies the Earth-based technique of using magnetic forces to handle cell cultures in the microgravity environment of the space station. Researchers add gold atoms in a polymer matrix to a culture of human lung cancer cells. These atoms bind strongly to the membrane of the cells, which then makes it possible to manipulate them with magnets.

"This technology may enable us to handle cells in space in a way currently not possible," said project manager Luis Zea, research associate at BioServe Space Technologies, University of Colorado, Boulder. "We can use it to manipulate cells and make sure they are where we want them. For example, when adding fresh medium or a fixative to a culture, there is a good chance cells will move, which affects the parameters of the experiment. After adding these magnetic particles, we can use magnets to keep the cells in one place."

The technique, known as bioprinting, also makes it possible to grow cell cultures in two dimensions on a surface in space, the way they naturally grow on Earth.

"On Earth, you put cells on a biofilm medium and they grow on its surface," Zea explained. "That doesn't happen in space, because there isn't enough gravity to hold them to that surface. So currently, we start growing cells on a medium on the ground, launch to space, and then start the experiment. With the magnetic particles, we can start growing cell cultures in space the same as on Earth."

These two-dimensional cell cultures provide controls for space-based cell culture research and comparisons with ground studies. That enhances the cell and tissue culture capabilities of the orbiting lab and enables biological research previously deemed unfeasible in space.

Glauco Souza, principle investigator at Nano3D Biosciences, Inc in Houston and colleagues have done research indicating the gold nanoparticles do not interfere with biological processes when tested on Earth.

The technology also has potential applications for investigations requiring 3-D cell cultures. In space, cell cultures grow in 3-D, which decades of research have shown is more representative of how cells grow and function in living organisms. Researchers may be able to use this technology to direct the shape of 3-D cultures to resemble a specific target of study, such as a particular type of cancer, Zea said. Creating cultures that better capture the characteristics of tissue in living organisms almost as easily on the ground as in space could, for example, reduce drug development costs.

"This investigation tests a new technology and other scientists can then identify how it may apply to their field of research," Zea said.

The investigation uses existing hardware aboard the space station. Nano3D Biosciences developed the magnetic nanoparticle technology and, with support from the Center for Advancement of Science in Space (CASIS) which manages in the U.S. National Lab aboard the station, adapted it for experiments in space. The company also developed the cell bioprinting technology for forming 2-D or monolayer cultures of cells. Together, these technologies allow culturing cells in 2-D and 3-D both in space and on the ground, which helps isolate the effect of gravity on an experiment.

###

Media Contact

Rachel Barry
[email protected]
@NASA_Johnson

http://www.nasa.gov/centers/johnson/home

Original Source

https://www.nasa.gov/mission_pages/station/research/news/magnetic_3D_cell_culturing

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Healthcare Costs in Chinese Adults with CKD and Diabetes

October 13, 2025

mRNA Therapy Revives Sperm Production and Fertility in Mice

October 13, 2025

Impact of Storage Time and Temperature on FFPE Proteomics

October 13, 2025

Advancing Birth Equity Through Collaborative Systems Mapping

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1233 shares
    Share 492 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Strategy to Weaken Cancer Cells Promises to Boost Prostate Cancer Treatment

Healthcare Costs in Chinese Adults with CKD and Diabetes

Scientists Unveil Novel Method to Manipulate Mechanical Vibrations in Metamaterials

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.