• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cell biologists discover crucial ‘traffic regulator’ in neurons

Bioengineer by Bioengineer
April 19, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Neurons are the main cells in the nervous system. They process information by sending, receiving, and combining signals from around the brain and the body. All neurons have a cell body where molecules vital for its functioning and maintenance are produced. The axon, a long and slender extension that can reach one metre in length in humans, sends information from the nerve cell to other nerve cells. Neuronal survival is highly dependent on the transport of vital molecules within this axon. Research has shown that defects in the transport function in the axons play a key role in degenerative brain diseases such as Alzheimer.

First comprehensive map

"Previous research examined transport processes in small areas of the axon, such as the very beginning or the very end. This left it unclear how the movement of molecules through the axon was regulated over long distances. In our study, we provide the first comprehensive map of transport in mammalian axons", says Casper Hoogenraad, Professor of Cell Biology at Utrecht University, explaining the relevance of this study.

Stumped

In most neurons, an area between the cell body and the axon called the 'axon initial segment' serves as a checkpoint: only some molecules can pass through it. This area has stumped scientists for more than a decade. Why should one type of molecule be able to pass through this area, while others cannot? The answer is to be found in the traffic regulator, a protein called MAP2. "With this discovery, we have answered a fundamental question about the unique functioning of nerve cells that has occupied scientists for a long time", lead author of the study Dr Laura Gumy says.

Driving force

The cell biologists from Utrecht first discovered that larger quantities of MAP2 accumulate between the cell body and the axon. When they removed MAP2 from the neuron, the normal pattern of molecule movement changed. Certain molecules suddenly ceased to enter the axon, whereas others accumulated in the axon instead of passing through to the cell body. This abnormal transport indicates that MAP2 is the driving force behind transport within the axon.

Car key

The cell biologists from Utrecht University went on to make another very important discovery. Since axons are so long, transport in the neurons is carried out by sets of proteins – known as 'motor proteins' – that carry packages of other proteins on their back. As it turns out, MAP2 is able to switch a specific 'motor protein' on or off, like a car key. This means that MAP2 actually controls which packages of molecules may enter the axon and which may not. Targeting the activity of the transport engine allowed the researchers to make another interesting discovery: MAP2 is also able to control the delivery of molecules at specific points along the axon.

New targets for therapies

"Transport within axons has been shown to fail in Alzheimer, Parkinson's disease and Huntington's disease, as well as in many other diseases. When the neuron is no longer able to control where molecules go, or is unable to get molecules to where they need to be, it cannot do its job. By understanding how transport works, we have laid the foundation for considering new targets and potential therapies for various neurodegenerative disorders", Casper Hoogenraad concludes.

###

Media Contact

Monica van der Garde
[email protected]
31-061-366-1438

http://www.uu.nl

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Global Coral Phylogeny Unveils Ancient Resilience, Risks

October 23, 2025
blank

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

October 23, 2025

New Study Demonstrates AI’s Potential to Deliver Safe Treatment Guidance for Opioid Use Disorder During Pregnancy

October 23, 2025

Neural Signatures of Turn-Freezing in Parkinson’s Disease

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    307 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    158 shares
    Share 63 Tweet 40
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Global Coral Phylogeny Unveils Ancient Resilience, Risks

Golden Platform Unveils the Hidden Forces of Nature’s Invisible Glue

New Study Demonstrates AI’s Potential to Deliver Safe Treatment Guidance for Opioid Use Disorder During Pregnancy

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.