• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cell Atlas launched at ASCB 2016 Meeting

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

San Francisco, Dec. 4, 2016: After the completion of the human genome in 2001, another major milestone was reached with the launch of the Cell Atlas at the 2016 American Society of Cell Biology Meeting in San Francisco. An open-access interactive database with unparalleled high-resolution images, the Cell Atlas visualizes for the first time the location of more than 12,000 proteins in cells — opening the way for "spatial proteomics", an exciting new discipline which is expected to lead to a fundamental expansion in our understanding of human health and disease.

KTH Royal Institute of Technology Professor Mathias Uhlen, who is Director of the Human Protein Atlas, explains: "After the genome project, which has characterized the number of human protein-coding genes, the next step is to elucidate the function of these proteins. Being able to show the location of human proteins in time and space with subcellular resolution is an essential first step towards gaining new insights into protein function."

The Cell Atlas, part of the Sweden-based Human Protein Atlas initiative, displays high resolution, multicolour images of immunofluorescent stained cells. With more than 12,000 human proteins mapped to 30 different cellular structures, the Cell Atlas provides spatial information on protein expression patterns at a fine subcellular level. The analysis reveals a surprisingly complex cellular architecture with more than half of all proteins localized to multiple compartments. Furthermore, a significant portion was found to exhibit variation in expression at a single cell level.

In a novel twist, the project also enlisted the help of online gamers. CCP Games, Massively Multiplayer Online Science (MMOS), Reykjavik University, and the Cell Atlas team jointly developed a mini-game, "Project Discovery", for EVE Online gamers. KTH Associate Professor Emma Lundberg, Director of the Cell Atlas, says: "At any time and place in EVE Online, players are able to play the mini-game, Project Discovery, and categorize the protein expression patterns from Cell Atlas images into different organelle categories. This was a help for us in classifying organelle substructures and refining the details in the Cell Atlas.

"In particular, we expect the Cell Atlas to play a key role in the exciting new area of spatial proteomics. In order to expand our understanding of the workings of human cells from a holistic point of view, in particular in the context of health and disease, detailed knowledge about the underlying molecular system is needed," Lundberg says.

###

Media Contact

Richard Hayhurst
[email protected]
0044-077-118-21527

http://www.kth.se/eng/index.html

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.