• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CDEX listens to the sound of cosmology from a laboratory deep underground

Bioengineer by Bioengineer
May 13, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Numerous compelling evidences from astroparticle physics and cosmology indicate that the major matter component in the Universe is dark matter, accounting for about 85% with the remaining 15% is the ordinary matter. Nevertheless, people still know little about the dark matter, including its mass and other properties. Many models predict dark matter particles could couple to ordinary particle at weak interaction level, so it is possible to capture the signal of dark matter particle in the direct detection experiment. The scientific goals of the China Dark matter Experiment (CDEX) are on direct detection of light dark matter and neutrino-less double beta decay with p-type point contact germanium (PPCGe) detectors at the China Jinping Underground Laboratory (CJPL). The measurable energy spectra induced by the elastic scattering between dark matter particles and target nucleons in CDEX detector system could give us the information of dark matter mass, spin and other properties.

The analysis of the current dark matter experiments is usually model dependent, and many models beyond the standard model have predicted the existence of dark matter, such as super-symmetry model and extra-dimension model. Due to the variety of physics models, the constraints obtained from same experimental data cannot be applied directly to other models, which brings complications to physical interpretations. Cosmology observations have verified that the major part of dark matter is the non-relativistic cold dark matter, and as a result, the momentum transfer in the scattering process between dark matter particles and nucleons is only about hundreds of MeV, much lower than the electroweak scale (~250 GeV). It is therefore suitable to use effective field theory to analyze the interaction between dark matter and ordinary matter. Two alternative schemes have been proposed in recent years to study different possible interactions, namely non-relativistic effective field theory (NREFT) and chiral effective field theory (ChEFT). An effective theory contains all possible interactions allowed by given symmetric principles, so it can model-independently reduce the complicacy of analysis.

In the dark matter direct detection experiments, what are mostly focused on are the spin-independent (SI) and spin-dependent (SD) scattering analysis, while EFT can give more momentum-dependent or velocity-dependent interaction which are not taken into consideration usually. Benefiting from the low electrical noise of PCCGe, the analysis threshold of CDEX-1B and CDEX-10 both reach 160 eV, which can largely improve the detection sensitivity for light dark matter.

Based on the data set of CDEX-1B and CDEX-10, CDEX collaboration presents new limits for the couplings of WIMP-nucleon arising from NREFT and ChEFT. In the nonrelativistic effective field theory approach, they improve over the current bounds in the low mχ region. In the chiral effective field theory approach, they for the first time extended the limit on WIMP-pion coupling to the mχRelated results have been published online entitled “First experimental constraints on WIMP couplings in the effective field theory framework from CDEX” on Science China-Physics, Mechanics & Astronomy (Sci. China-Phys. Mech. Astron. 64, 281011 (2021))[1]. Prof. Y. F. Zhou from the Institute of Theoretical Physics, Chinese Academy of Sciences wrote a review article for this publication[2].

The operation and analysis of CDEX-1B and CDEX-10 are coming to the end, and the next generation of experiments CDEX-100/CDEX-1T are under preparation now. The lower background level and improvement of PPCGe performance can raise the sensitivity of direct detection experiment. While the next generation experiment of CDEX can discover dark matter remains unknown, but the mystery of dark matter will encourage more and more researchers to pursue its studies until the day when this profound mystery of the Universe will be solved.

###

See the article:

[1] Y. Wang et al., (CDEX Collaboration), First experimental constraints on WIMP couplings in the effective field theory framework from CDEX, Sci. China-Phys. Mech. Astron. 64, 281011 (2021), https://doi.org/10.1007/s11433-020-1666-8

[2] Y.-F. Zhou, Improved constraints on dark matter effective interactions from CDEX, Sci. China-Phys. Mech. Astron. 64, 2841031 (2021), https://doi.org/10.1007/s11433-021-1679-4

Media Contact
Qian Yue
[email protected]

Related Journal Article

http://dx.doi.org/10.1007/s11433-020-1666-8

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Pulp Mill Waste Transformed into Eco-Friendly Solution for Eliminating Toxic Dyes

September 27, 2025

Fluorogenic Probes Unveil Ferroptosis Onset, Progression

September 26, 2025

Cutting-Edge Adaptive Optics Boost Gravitational-Wave Discoveries

September 26, 2025

Jingyuan Xu of KIT Honored with “For Women in Science” Sponsorship Award

September 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Oral Fat Sensitivity with Pure Milk Emulsions

Impact of Nasal Obstruction on Breathing Flow

Revolutionary Numerical Method for PEMFC Model Inversion

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.