• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cattle associated antibiotics disturb soil ecosystems, Virginia Tech researchers say

Bioengineer by Bioengineer
March 29, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Virginia Tech

Manure from cattle administered antibiotics drastically changes the bacterial and fungal make-up of surrounding soil, leading to ecosystem dysfunction, according to a Virginia Tech research team.

The team analyzed soil samples from 11 dairy farms in the United States, and found that the amount of antibiotic resistant genes was 200 times greater in soil near manure piles compared with soil that wasn't.

Furthermore, microbes with greater antibiotic-resistance showed higher stress levels. Their findings were published March 29 in the Proceedings of the Royal Society B.

"The development of antibiotic resistance can be an energy-sucker for a microorganism, and would explain why we've seen higher stress levels. We need to continue to investigate this possible link," said lead author Michael Strickland, an assistant professor of biological sciences in the College of Science and researcher with Virginia Tech's Global Change Center.

Soil microbial communities are important for sustaining ecosystem services such as climate regulation, soil fertility, and food production. Perturbations, such as antibiotic exposure, can have marked effects on soil microbes and these services.

The use of antibiotics on livestock in the United States is a growing concern, especially in instances when they are used to prevent rather than specifically treat disease, according to Carl Wepking of Lancaster, Wisconsin, a doctoral student in biological sciences in the College of Science and first author on the paper.

Wepking spent part of his childhood on a beef cattle farm, and is familiar with the challenges that farmers face.

"The growing human population and growing global middle class puts pressure on farmers to produce more livestock products," said Wepking, who is also an Interfaces of Global Change fellow. "However, the use of antibiotics to increase production can negatively impact the ecosystem and agricultural soils, not to mention human health."

However, for their current project, funded by USDA, Strickland and Wepking will focus on the antibiotics' impact on soil communities. The project has three phases, of which surveying the 11 dairy farms was the first. The next step will be to sample soil at Kentland Farm in order to disentangle manure from antibiotic effects on soil microbes. The third phase will involve direct application of the antibiotics to soil in the lab.

"While the human health implications of widespread antibiotic use are well known, Wepking et al. investigate another potentially important affect–how exposure to antibiotics shapes the soil microbial community and its functioning," said Serita Frey, a professor of soil microbial ecology at the University of New Hampshire. "This research highlights that antibiotic additions to soil (through cattle manure application) have the potential to alter soil function in important ways, particularly as related to carbon cycling."

Other Virginia Tech authors on the paper include Brian Badgley, an assistant professor of crop and soil environmental sciences in the College of Agriculture and Life Sciences; Jeb Barrett an associate professor of biological sciences in the College of Science; and Katharine Knowlton, a professor of dairy science in the College of Agriculture and Life Sciences.

###

Media Contact

Lindsay Key
[email protected]
540-231-6594
@VTresearch

http://www.vtnews.vt.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

February 7, 2026

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

February 7, 2026

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

February 7, 2026

Scientists Identify SARS-CoV-2 PLpro and RIPK1 Inhibitors Showing Potent Synergistic Antiviral Effects in Mouse COVID-19 Model

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Succinate Receptor 1 Limits Blood Cell Formation, Leukemia

Palmitoylation of Tfr1 Drives Platelet Ferroptosis and Exacerbates Liver Damage in Heat Stroke

Oxygen-Enhanced Dual-Section Microneedle Patch Improves Drug Delivery and Boosts Photodynamic and Anti-Inflammatory Treatment for Psoriasis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.