• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 13, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Carbon goes with the flow

Bioengineer by Bioengineer
November 13, 2018
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Courtesy of MSU

EAST LANSING, Mich. – Many people see the carbon cycle as vertical – CO2 moving up and down between soil, plants and the atmosphere.

However, new Michigan State University research published in the current issue of Geophysical Research Letters, adds a dimension to the vertical perspective by showing how water moves massive amounts of carbon laterally through ecosystems – especially during floods. These findings — which analyzed more than 1,000 watersheds, covering about 75 percent of the contiguous U.S. – have implications for climate change and water quality.

Carbon in the environment, specifically dissolved organic carbon or DOC, is a master variable that influences many of our planet's fundamental processes, such as water chemistry, greenhouse gas emissions and pollutant transport across land and water, said Jay Zarnetske, MSU earth and environmental scientist and the study's lead author.

"When water flows through ecosystems, it picks up organic carbon from plants and soils, and in many cases, water determines whether the ecosystem is a net carbon source or sink," he said. "The massive amount of carbon that leaks out of ecosystems as DOC is about as big as the net amount of carbon taken up from the atmosphere each year. So accurate accounting is crucial when managing the 'carbon bank account.'"

DOC in rivers is like making tea, Zarnetske added.

"You start with relatively clear water falling as precipitation, and then the organic carbon in the landscape gets leached into the water," he said. "This tea then gets flushed to streams during floods, often turning the water brown."

Zarnetske's new work suggests a better way to account for the carbon leaving ecosystems as DOC by including data from flood events. Citing logistical and safety concerns, scientists typically give rivers wide berth during floods. As a result, researchers know less about DOC behavior during floods. When water is flowing fast and brown, though, is when the most carbon is being transported out of most watersheds. In other words, this is a time when more sampling is needed.

What surprised the team of scientists is that floods readily flush carbon from landscapes in diverse ecosystems across North America, spanning from Michigan forests to the Sonoran Desert. They initially thought the DOC would be diluted by floods in many parts of the U.S. Floods, however, lead to the release of large amounts of DOC – or stronger tea, metaphorically speaking – from almost all environments in a relatively short time.

"We knew that DOC went up during floods in some areas, but we were surprised to see the same pattern in the vast majority of watersheds all across the country," Zarnetske said. "Deserts don't have as much DOC as deciduous forests, but when you have an event like a flash flood, the process is the same, and the torrents of water are chock full of carbon."

Another important confirmation from the study's massive data set was the significant role wetlands play in our watersheds. The DOC flushing behavior across the U.S. was primarily related to the acreage of wetlands in a watershed. Wetlands act as buffers or storage zones for DOC in watersheds. If floodwaters rise, water and DOC in the wetlands closest to the river can rapidly spill over.

Consequently, where natural wetlands are located within the watershed is important. Draining natural wetlands and "trading them" for another nearby swamp or building an artificial wetland might look good on paper, but it's going to affect an area's ability to store and release carbon, Zarnetske added.

"Wetlands are major controls for carbon balance and water quality, and they're also some of the most vulnerable landscapes," he said. "If you move them, you're changing a region's plumbing and the chemistry."

For this research, the scientists used data from across the U.S., but they didn't wade in a single stream or swamp. Their results came from scads of data collected over decades by state and federal government agencies, primarily the U.S. Geological Survey. The dataset's sheer size can be intimidating, and mastering the skills needed to tease out its secrets is daunting. However, it is a true treasure trove of information. While collecting this long-term data may not seem as exciting as conducting new experiments, the historic data are valuable and their value only grows with time, Zarnetske said.

"It's not flashy, but it's powerful data," he said. "These data were being collected long before we knew of computers and methods powerful enough to analyze it all. It's another example of how long-term data collections are key to discoveries and worthy of continued funding."

And such massive datasets play into MSU's strengths, he added.

"Among MSU's strong suits are data-intensive research, macrosystems ecology and interdisciplinary research," Zarnetske said. "Our team leveraged this publicly available dataset in a novel way to refine many longstanding theories enabling better management of carbon balances, wetlands and other water-quality issues."

###

The research team for this study included Ben Abbott, former MSU earth and environmental scientist, now at Brigham Young University; Martin Bouda, Czech University of Life Sciences; and James Saiers and Peter Raymond, Yale School of Forestry and Environmental Studies.

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges. For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at twitter.com/MSUnews.

Media Contact

Layne Cameron
[email protected]
@MSUnews

http://msutoday.msu.edu/journalists/

Original Source

http://go.msu.edu/BRH http://dx.doi.org/10.1029/2018GL080005

Share12Tweet7Share2ShareShareShare1

Related Posts

Blood-Brain Barrier Regulators: Age and Sex Differences

Blood-Brain Barrier Regulators: Age and Sex Differences

October 13, 2025
Activating Sperm Motility: A Breakthrough Offering New Hope for Male Infertility

Activating Sperm Motility: A Breakthrough Offering New Hope for Male Infertility

October 13, 2025

miR-542 Overexpression Halts Cervical Cancer Growth

October 13, 2025

Global Gender Disparities in Alopecia Areata Risk

October 13, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1234 shares
    Share 493 Tweet 308
  • New Study Reveals the Science Behind Exercise and Weight Loss

    104 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    101 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    91 shares
    Share 36 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Signal Processing: The Traveling-Wave Amplifier

Mobile Health Boosts Clinic Attendance for HIV Patients

Discover Mutactimycins H-J: Antimycobacterial Treasures Uncovered!

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.