• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Carbon-capture tree plantations threaten tropical biodiversity for little gain, ecologists say

Bioengineer by Bioengineer
October 3, 2023
in Chemistry
Reading Time: 4 mins read
0
Forest
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The increasingly urgent climate crisis has led to a boom in commercial tree plantations in an attempt to offset excess carbon emissions. However, authors of a peer-reviewed opinion paper publishing October 3 in the journal Trends in Ecology and Evolution argue that these carbon-offset plantations might come with costs for biodiversity and other ecosystem functions. Instead, the authors say we should prioritize conserving and restoring intact ecosystems.

Forest

Credit: Jesús Aguirre Gutiérrez

The increasingly urgent climate crisis has led to a boom in commercial tree plantations in an attempt to offset excess carbon emissions. However, authors of a peer-reviewed opinion paper publishing October 3 in the journal Trends in Ecology and Evolution argue that these carbon-offset plantations might come with costs for biodiversity and other ecosystem functions. Instead, the authors say we should prioritize conserving and restoring intact ecosystems.

“Despite the broad range of ecosystem functions and services provided by tropical ecosystems, society has reduced value of these ecosystems to just one metric—carbon,” write the authors, led by Jesús Aguirre-Gutiérrez (@jeaggu) of the Environmental Change Institute at the University of Oxford. “Current and new policy should not promote ecosystem degradation via tree plantations with a narrow view on carbon capture.”

Tropical ecosystems, which include forests, grasslands, and savannahs, are attractive sites for tree plantations because their climate and physical features promote rapid tree growth (and rapid tree growth means rapid carbon capture). Although some tree plantations involve reforestation of degraded land, in many cases they involve afforestation—planting forests in undegraded and previously unforested regions such as grasslands.

It’s often assumed that tree planting for carbon capture also benefits biodiversity and enhances socioeconomic benefits, but the authors argue that this is usually not the case. Tropical ecosystems are highly biodiverse, and they provide multiple ecosystem services, such as maintaining water quality, soil health, and pollination. In comparison, carbon-capture plantations are usually monocultures and are dominated globally by just five tree species—teak, mahogany, cedar, silk oak, and black wattle—that are grown for timber, pulp, or agroforestry.

Although these plantations might be economically valuable, they usually support a lower level of biodiversity. For example, in the Brazilian Cerrado savannah, a 40% increase in woody cover reduced the diversity of plants and ants by approximately 30%. These plantations can also directly degrade ecosystems by reducing stream flow, depleting groundwater, and acidifying soils.

The authors argue that even ambitious commitments to carbon-capture plantations will be limited in their ability to capture carbon. “The current trend of carbon-focused tree planting is taking us along the path of large-scale biotic and functional homogenization for little carbon gain,” the authors write. “An area equivalent to the total summed area of USA, UK, China, and Russia would have to be forested to sequester one year of emissions.”

And tropical grasslands and savannahs are already carbon sinks. When intact, tropical grasslands and savannahs store large quantities of carbon below ground. In contrast to carbon-capture tree plantations, which predominantly store carbon above ground, these below-ground carbon sinks—which would be lost if afforested—are less susceptible to disturbances such as drought and fire.

The authors say that there are considerable financial incentives for private companies to offset their carbon emissions by investing in carbon capture and that the boom in carbon-capture plantations is being driven by money, not ecology. Compared to parameters such as biodiversity and ecosystem services, carbon is easy to measure and monetize. But overemphasizing the benefits of tree planting for carbon capture “can disincentive the protection of intact ecosystems and can lead to negative trade-offs between carbon, biodiversity, and ecosystem function,” the authors write.

Instead of focusing on commercial tree planting, the authors say we should prioritize conserving intact ecosystems. “An overarching view on maintaining original ecosystem functioning and maximizing as many ecosystem services as possible should be prioritized above the ongoing economic focus on carbon capture projects,” they write.

###

This research was supported by the Natural Environment Research Council, the University of Oxford, and the Trapnell Fund.

Trends in Ecology and Evolution, Aguirre-Gutiérrez et al., “Valuing the functionality of tropical ecosystems beyond carbon” https://cell.com/trends/ecology-evolution/fulltext/S0169-5347(23)00223-9

Trends in Ecology & Evolution (@Trends_Ecol_Evo), published by Cell Press, is a monthly review journal that contains polished, concise, and readable reviews and opinion pieces in all areas of ecology and evolutionary science. It aims to keep scientists informed of new developments and ideas across the full range of ecology and evolutionary biology—from the pure to the applied and from molecular to global. Visit http://www.cell.com/trends/ecology-evolution. To receive Cell Press media alerts, please contact [email protected].



Journal

Trends in Ecology & Evolution

DOI

10.1016/j.tree.2023.08.012

Method of Research

Literature review

Subject of Research

Not applicable

Article Title

Valuing the functionality of tropical ecosystems beyond carbon

Article Publication Date

3-Oct-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Yeast Engineered to Tackle the Rare Earth Metals Challenge

Yeast Engineered to Tackle the Rare Earth Metals Challenge

October 17, 2025
blank

Steric Hindrance Governs Supramolecular Dissociation Rates and Material Characteristics

October 17, 2025

UNF Chemistry Professor Receives NSF Grant to Enhance Laser-Based Measurement Technology

October 16, 2025

Smartphone Imaging System Advances Early Oral Cancer Detection in Dental Clinics

October 16, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1254 shares
    Share 501 Tweet 313
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    93 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mapping SET1B Chromatin Interactions with DamMapper

Predicting Early-Onset Sepsis in Newborns: Key Maternal Factors

BmVDAC Protein Boosts Plasminogen Activation

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.