• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Capturing chemotherapy drugs before they can cause side effects

Bioengineer by Bioengineer
January 9, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Hee Jeung Oh


Although chemotherapy can kill cancer cells very effectively, healthy cells also suffer. If doctors could remove excess chemotherapy drugs from a patient’s bloodstream after the medicines have done their job, they might reduce side effects such as hair loss and nausea. Now, researchers have developed a 3D-printed device that absorbs excess chemo drugs before they spread throughout the body. They report their results in ACS Central Science.

Doxorubicin, like many chemotherapy drugs, kills more tumor cells when given at higher doses. However, most patients cannot tolerate large amounts of the drug because it can cause heart failure, among other side effects. Nitash Balsara, Steven Hetts, Joseph DeSimone, Hee Jeung Oh and colleagues wondered if they could make a device that would filter out doxorubicin from blood at locations outside of the tumor to reduce the likelihood that the drug would harm healthy cells.

The researchers used a 3D printer to fabricate tiny cylinders made of poly(ethylene glycol) diacrylate. Inside the cylinders was a square lattice structure that would allow blood cells to pass through it, with a copolymer coating that binds to doxorubicin. The researchers tested these absorbers in pigs, inserting them into a vein. When they injected doxorubicin into the same vein, the drug flowed in the bloodstream to the device. By measuring the doxorubicin concentration in the vein at a location after the absorber, the researchers determined that it captured about 64 percent of the drug from the bloodstream. The device could open a new route to help patients fight cancer, enabling reduced side effects or an increased chemotherapy dose, the researchers say.

###

The authors acknowledge funding from the National Institutes of Health, the National Cancer Institute and the U.S. Department of Energy.

The paper’s abstract will be available on January 9 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00700

The American Chemical Society, the world’s largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact [email protected].

Follow us: Twitter | Facebook

Media Contact
Katie Cottingham
[email protected]
301-775-8455

Tags: cancerCell BiologyChemistry/Physics/Materials SciencesPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial Chemistry
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Barley DREB Genes: Key Players in Stress Responses

December 16, 2025
Unveiling Prolificacy Genes in Jining Grey Goats

Unveiling Prolificacy Genes in Jining Grey Goats

December 16, 2025

Unveiling Hormone Genes in Prunus persica Seed Dormancy

December 15, 2025

Harnessing Microbial Siderophores for Plant Iron Nutrition

December 15, 2025
Please login to join discussion

POPULAR NEWS

  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    122 shares
    Share 49 Tweet 31
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Nurses’ Empowerment with NLP Techniques

Assessing Cognitive Impairment in Pediatric Cancer Patients

Evaluating Medications in Older Adults at Discharge

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.