• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, October 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Cannibalism: A new way to stop the spread of disease

Bioengineer by Bioengineer
July 10, 2017
in Health
Reading Time: 6 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Ben Van Allen, UCSD

Cannibalism may be just what the doctor ordered, according to a new study that will be published in American Naturalist led by former LSU postdoctoral researcher and current University of California, San Diego, or UCSD, postdoctoral researcher Benjamin Van Allen, along with other individuals in Bret Elderd lab's at LSU and Volker Rudolf's lab at Rice University.

LSU Department of Biological Sciences Associate Professor Bret Elderd investigates how various factors affect disease transmission in insects, particularly in Lepidoptera, an order of insects that includes butterflies and moths. With his lab group, Elderd looks at how factors including protective chemicals produced by plants that insects eat and changes in temperature can either quicken or dampen the spread of disease. By studying these and other factors, Elderd's work may help other researchers create environmentally friendly bioinsecticides to protect crops like soybeans, for example. But Van Allen, Elderd and colleagues are finding that cannibalism may be an understudied factor in the spread of disease.

Elderd was recently conducting field-based experiments with fall armyworm caterpillars, or Spodoptera frugiperda, the larval life stage of the fall armyworm moth, to mimic and study the spread of a lethal baculovirus in this lepidopteran when he noticed something strange.

The experiments involved enclosing individual plants in mesh bags, releasing diseased larvae into the bags to contaminate the plant with a virus and following the spread of the disease as the healthy individuals consume the plant and therefore the virus. At the end of these experiments, when Elderd and his lab group were collecting healthy larvae from the plants and transporting them back to the lab to study more closely how the disease had spread, they ran into what was at first simply an annoying problem. Elderd and his colleagues were returning from the field with bags full of half-eaten fall armyworms.

"With the fall armyworms, we would lose a large portion of a number of samples we transported back to the lab because when the larvae got close to each other during transport, they started to eat one another," Elderd said. "I started cursing my luck for conducting these studies with these dang bugs that would eat each other."

At first, Elderd considered moving to a different species of insect to continue his research. But over time, he started questioning whether, rather than being simply a nuisance to his field experiments, cannibalism among armyworms was serving a bigger purpose.

"Cannibalism is ubiquitous in nature," Elderd said. "A cannibalistic species will readily eat others of its own species, or conspecifics. But for a long time cannibalism was seen as an aberration when it occurred in any species. This may be related to bias in how we observe cannibalism in nature. As population densities increase, cannibalism and disease spread can also increase. Since cannibalism may increase in populations affected by a disease outbreak, we tend to associate cannibalism in a population with the spread of disease."

Prompted by their research on disease outbreaks in caterpillars, Van Allen, Elderd and colleagues delved into published works on cannibalism and disease, and developed theoretical models for the interaction between cannibalism and disease across the animal kingdom. The researchers have found that, counter to its taboo nature, cannibalism can be advantageous.

"A cannibal that eats a victim has essentially found 'the perfect meal,'" Elderd said. "If I'm a cannibal, my prey has all the protein ratios and micronutrients that I need, because it's essentially me. The disadvantage, however, is that my victim is also the perfect host for any suite of pathogens or parasites that would also like to feast on me. The thought here is that I shouldn't be cannibalistic because I have a high probability of contracting a particular disease if I feed on an organism of my own species."

This risky and often disadvantageous behavior has pervaded biological research for many years, with the thought that cannibalism can bolster the spread of disease through a population. A study published just this week in Nature Ecology & Evolution highlights how some plants produce defensive chemicals that may prompt insects that feed on them to become more cannibalistic. This study shows how cannibalism can have important consequences and may drive interactions between species, Elderd said, but the primary disadvantage in terms of cannibalism is still being eaten, not necessarily being the cannibal. Using theoretical models and examples from across the animal kingdom, Elderd and his research group show in their new American Naturalist paper that cannibalism is not always disadvantageous for the cannibals. Cannibalism may in fact decrease the spread of disease and prevent disease outbreaks in some species.

"We are flipping the paradigm, with regards to cannibalism," Elderd said.

And it makes sense, if looked at from the perspective of a population susceptible to disease outbreaks.

"What a disease really wants to do is reproduce," Elderd said. "Say that I have the flu. To anthropomorphize this virus, it wants ideally to spread to more than just one other person. In our paper, we explore the idea that if I have a disease and another organism of my own species eats me, any pathogen or parasite I have is only spread to one other individual. An outbreak would require transfer of that pathogen or parasite to multiple individuals, not just one other cannibal."

Cannibalism by itself is a poor mechanism for the spread of disease, said study author Ben Van Allen. When a cannibal eats a healthy individual, it kills a potential future host for the disease, which is also bad for the disease. When a cannibal eats an infected individual, there's always the possibility that a cannibalistic individual won't even catch a parasite or contract a disease its prey has, which makes cannibalism especially dangerous from the parasites perspective, Elderd said.

"There's a chance that a disease might essentially become extinct within a population through such one-on-one cannibalism, unless more than one individual feasts on victims, and even then the disease must spread to more than one cannibal more often than it spreads to none," Elderd said. Volker Rudolf, one of the American Naturalist study co-authors, originally proposed this idea.

When an individual caterpillar becomes sick with this virus, its growth is stunted. Sick individuals end up being smaller and easier for healthy individuals to consume, or cannibalize.

"What we show in our paper is that if these caterpillars become cannibalistic and consume smaller, sick individuals in the population, transmission of this virus through the population is reduced," Elderd said.

The paper also contrasts the human agricultural practice of culling livestock to remove sick individuals and prevent disease spread, for example in the case of foot-and-mouth outbreaks in livestock, to cannibalism. It turns out that cannibalism can be far more effective at culling diseased individuals from a population.

"Culling is typically achieved by removing diseased individuals at a constant rate," Elderd said. "Cannibalism, however, increases as you increase population size. For a disease outbreak, you need not only to have sick individuals, but also a large number of potentially susceptible individuals for the disease to spread to. Cannibalism can knock a population below the threshold number of susceptible individuals necessary for an outbreak to occur and be maintained."

Elderd describes this study as a math-based and theoretical investigation of cannibalism. The next step is conducting field-based experiments to demonstrate these ideas empirically.

"We didn't include it in this paper, but we do have empirical work showing that our theories hold water," Elderd said.

Using experiments in the fall armyworm system, Elderd's group has found that cannibalism decreases the rate of disease spread. In other systems, there is observational evidence that cannibalism hinders the spread of disease.

"In some species, mothers will cannibalize their young to weed out the sick and weak, ensuring higher survival rates for healthy offspring," Elderd said. "But there hasn't been a lot of empirical research to back up these observations."

Elderd and his colleagues have provided a first step toward empirical evidence of exactly how cannibalism affects disease spread in insect populations. While there are parasites that may benefit from cannibalism indirectly by exploiting loopholes in the host life cycle, Van Allen's work suggests that at least for some populations, cannibalism may be just what the doctor ordered.

###

Media Contact

Alison Satake
[email protected]
225-578-3870
@LSUResearchNews

http://www.lsu.edu

Original Source

http://www.lsu.edu/mediacenter/news/2017/07/10bio_elderd_cannibalism.php http://dx.doi.org/10.1086/692734

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Reveals Innovative System That Significantly Reduces Patient Discharge Waiting Times

October 28, 2025
blank

Exploring Emotional Intelligence’s Impact on Nursing Students’ Internet Addiction

October 28, 2025

Ambivalent Sexism’s Impact on Chinese Women’s Eating Disorders

October 28, 2025

Streamlining Abortion Policy: A Systems Thinking Approach

October 28, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1288 shares
    Share 514 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    198 shares
    Share 79 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

“‘Broken’ Genes Key to Marsupial Fur Color Variation”

Advanced AI ECG Technology Enhances Detection of Severe Heart Attacks in Emergency Situations

Autistic Traits Shape Social Attention in India

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.