• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cancer-fighting viruses soften up their victims before attacking

Bioengineer by Bioengineer
April 11, 2022
in Biology
Reading Time: 3 mins read
0
Dr. Caroline Ilkow
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A research team based at the University of Ottawa and The Ottawa Hospital has developed a virus that infects and kills cancer cells without harming normal cells, while also sending out signals to prepare nearby uninfected cancer cells for viral attack. Their new study, published in Nature Communications, shows that this novel strategy can shrink tumours and significantly prolong survival in several cancer models in mice.      

Dr. Caroline Ilkow

Credit: The Ottawa Hospital

A research team based at the University of Ottawa and The Ottawa Hospital has developed a virus that infects and kills cancer cells without harming normal cells, while also sending out signals to prepare nearby uninfected cancer cells for viral attack. Their new study, published in Nature Communications, shows that this novel strategy can shrink tumours and significantly prolong survival in several cancer models in mice.      

The strategy relies on extracellular vesicles, tiny particles that pinch off from a cell and fuse with other cells. The research team created a virus that causes infected cells to produce extracellular vesicles filled with a specific RNA that blunts the antiviral defenses of nearby cancer cells. They found that this novel virus can work with other forms of immunotherapy, as well as with small-molecule drugs, to enhance cancer-killing even further.

“Cancer cells are constantly evolving new ways to evade our therapies, so we designed this therapy to target cancer on multiple fronts at the same time,” said senior author Dr. Carolina Ilkow, Assistant Professor in the Faculty of Medicine and Senior Scientist at The Ottawa Hospital. “We believe these observations are transformative for the fields of oncolytic viruses, miRNA therapeutics and exosome-based therapies.”

The researchers note that while many groups are investigating therapies based on RNA and extracellular vesicles, these therapies are much more difficult to manufacture and store than viral therapies. This new viral technology could have a broad impact, as it provides an easy and targeted way to “manufacture” and deliver RNA therapeutics and extracellular vesicles right inside the patient, rather than in a lab.

This research used a Maraba virus that has been tested in human clinical trials as a cancer therapy, but the strategy could be applied to other viruses as well. The researchers used several different models of pancreatic cancer (mouse and human) as well as models of ovarian, breast, kidney and skin cancer.

In addition to the researchers at The Ottawa Hospital and the University of Ottawa (Canada), the team includes researchers from the University of Leeds (UK), the University of Tabuk (Saudi Arabia), the University of Oxford (UK), the University of California Los Angeles (USA), the University of Ottawa Heart Institute (Canada) and Mount Sinai University (USA).

Authors: Marie-Eve Wedge*, Victoria A. Jennings*, Mathieu Crupi*, Joanna Poutou*, Taylor Jamieson, Adrian Pelin, Giuseppe Pugliese, Christiano Tanese de Souza, Julia Petryk, Brian J. Laight, Meaghan Boileau, Zaid Taha, Nouf Alluqmani, Hayley E. McKay, Larissa Pikor, Sarwat Tahsin Khan, Taha Azad, Reza Rezaei, Bradley Austin, Xiaohong He, David Mansfield, Elaine Rose, Emily E.F. Brown, Natalie Crawford, Almohanad Alkayyal, Abera Surendran, Ragunath Singaravelu, Dominic G. Roy, Gemma Migneco, Benjamin McSweeney, Mary Lynn Cottee, Egon J. Jacobus, Brian A. Keller, Takafumi N. Yamaguchi, Paul C. Boutros, Michele Geoffrion, Katey J. Rayner, Avijit Chatterjee, Rebecca C. Auer, Jean-Simon Diallo, Derrick Gibbings, Benjamin R. tenOever, Alan Melcher, John C. Bell and Carolina S. Ilkow
*Contributed equally

Funding: This research was supported by the Canadian Institutes of Health Research, the Canadian Cancer Society, the Ontario Institute for Cancer Research, The Ottawa Hospital Foundation, the Ottawa Regional Cancer Foundation, the Terry Fox Research Institute, the Lotte & John Hecht Memorial Foundation, Mitacs, the Government of Ontario, the Natural Sciences and Engineering Research Council of Canada, Lebovic Fellowship.



Journal

Nature Communications

Subject of Research

Animals

Article Title

Virally programmed extracellular vesicles sensitize cancer cells to oncolytic virus and small molecule therapy

Article Publication Date

7-Apr-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Goat Genome Study Uncovers Genes for Adaptation

October 26, 2025
blank

Exploring TIFY Family Genes in Panax Notoginseng

October 26, 2025

Genetic Diversity and Cytotype Insights in Platostoma

October 26, 2025

Exploring Archaeal Promoters with Explainable CNN Models

October 26, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1284 shares
    Share 513 Tweet 321
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    310 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    196 shares
    Share 78 Tweet 49
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    134 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Allied Health Research Growth in Regional Australia

Dynamic Traffic Control: Predicting Flow for Efficiency

Boosting Midwifery Skills with Virtual Reality Learning

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.