• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cancer comes back all jacked up on stem cells

Bioengineer by Bioengineer
March 19, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Colorado Cancer Center

After a biopsy or surgery, doctors often get a molecular snapshot of a patient's tumor. This snapshot is important – knowing the genetics that cause a cancer can help match a patient with a genetically-targeted treatment. But recent work increasingly shows that tumors are not static – the populations of cells that make up a tumor evolve over time in response to treatment, often in ways that lead to treatment immunity. Instead of being defined by a snapshot, tumors are more like a movie. This means that a tumor that recurs after treatment may be much different than the tumor originally seen in a biopsy.

Which is why, as reported in the journal Clinical Cancer Research, it was very special to collect three tumor samples over the course of three surgeries from a patient with salivary gland cancer.

"People talk about molecular evolution of cancer and we were able to show it in this patient. With these three samples, we could see across time how the tumor developed resistance to treatment," says Daniel Bowles, MD, clinical and translational investigator at the University of Colorado Cancer Center and Head of Cancer Research at the Denver Veterans Administration Medical Center.

The major change had to do with the proportion of the tumor made up of cancer stem cells, often seen as the most capable of driving growth of the disease: A sample taken during the patient's first surgery contained 0.2 percent cancer stem cells; a sample taken during the patient's third surgery contained 4.5 percent cancer stem cells. Additionally, the later tumor had overall 50 percent more cancer-driving mutations, and lower activity of genes meant to suppress cancer.

"By the third surgery, the tumor was invasive and aggressive," says Stephen Keysar, PhD, research assistant professor and basic investigator in the lab of senior author Antonio Jimeno, MD, PhD. Not only did the cellular makeup of the tumor change, increasing in the percentage of cancer stem cells, but, "all things being equal, if you compare a stem cell from the first surgery to stem cells from the third, the cells themselves became more aggressive," says Keysar.

Bowles compares cancer treatment to attacking a weed: "Maybe what's happening is the therapies are exfoliating the plant but not affecting the root," he says. In this conceptualization, cancer therapies may kill the bulk of the cells that make up a tumor, but unless they affect the cancer stem cells – the "root" – the tumor may return.

"When you treat a tumor and it's gone for a couple years and then comes back, it's likely that a population of cancer stem cells survived treatment. These stem cells can then restart the cancer much later," Keysar says.

Obtaining enough tumor tissue to analyze required growing patient samples on mice. This effort, supported by National Institutes of Health and philanthropic funds, led to the development of eight unique patient cell lines, some representing the first models of these salivary cancer subtypes.

"Importantly, as these models are based on human tumors, they can be used in the future to explore at the cellular and molecular level how specific genetic alterations regulate cancer development and resistance to therapy," says collaborator Mary Reyland, PhD, professor in the CU School of Medicine Department of Pathology.

"In this relatively simple but groundbreaking research work, we integrated molecular and cancer stem cell biology to show that tumors adapt and 'tool-up' to overcome therapies, leading to relapse in our patients. By pairing two young researchers with complementary expertise, and developing complex animal models, were we able to demonstrate the evolution of salivary cancers and the tumorigenic cells that drive them," Jimeno says.

"Cancers don't ever come back better. At least I've never seen it," Bowles says. "And now we know one important reason why."

###

Media Contact

Garth Sundem
[email protected]
@CUAnschutz

http://www.ucdenver.edu

Original Source

http://www.coloradocancerblogs.org/cancer-comes-back-all-jacked-up-on-stem-cells/ http://dx.doi.org/10.1158/1078-0432.CCR-17-3871

Share12Tweet7Share2ShareShareShare1

Related Posts

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

Isolating a Robust Heat-Resistant Metalloprotease from Geobacillus

August 29, 2025
New Insights on Breast Cancer Metastasis Biomarkers

New Insights on Breast Cancer Metastasis Biomarkers

August 29, 2025

Metabolomics Reveals Meat Quality in Dolang Sheep

August 29, 2025

Unlocking Diagnostic Markers for Myocardial Infarction

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Load and Speed on Ski Friction

Adaptive Deep Brain Stimulation Boosts Parkinson’s Treatment

CSF Total Tau: Marker of Synaptic Degeneration

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.