• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Cancer cells disguise themselves by switching off genes, new research reveals

Bioengineer by Bioengineer
March 30, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Amsterdam, March 30, 2017 – Scientists have uncovered how tumor cells in aggressive uterine cancer can switch disguises and spread so quickly to other parts of the body. In a study published in Neoplasia, researchers at the Washington University School of Medicine created a map showing which genes were switched on and off in different parts of the tumor, providing a "signature" of these switches throughout the genome.

The researchers say their findings support the idea that cancer cells suffer from an "identity crisis" — they switch off certain genes specific to the tissue they came from — helping them fit in more easily in different tissues, spreading the cancer. Switching these genes back on, they say, could lead to effective treatments.

Uterine carcinosarcoma is one of the deadliest forms of endometrial cancer. Unlike more common forms, it is particularly aggressive and accounts for a large proportion of the deaths related to endometrial cancer. Most tumors are made up of cells that stick to a certain growth pattern. But there can be several different types of cell in a uterine carcinosarcoma tumor, including ones that are not usually found in the uterus.

The researchers thought this ability to switch between different cell types could explain why they can spread so easily around the body; switching cell type effectively disguises the cells in different tissues. To find out how the cells change disguises, they created a map of the genes that were turned off when they were usually on, and vice versa.

"Carcinosarcoma cells show a unique ability to jump horses in mid-stream, switching from one cell type to another," said Dr. Ian Hagemann, one of the authors of the study. "It's not always changes in the DNA itself, but how the DNA is 'decorated' to turn the genes on and off — called epigenetics — that can determine cell type. I wanted to find out if there were consistent epigenetic changes in carcinosarcoma that could explain why it's so aggressive."

To determine how the cells switch from one type to another, they took three human uterine carcinosarcoma samples and sequenced the genomes of cells in two parts of each tumor: the carcinoma and sarcoma components. They analyzed the results to identify where the DNA had decorations called methylation — molecules attached that switch the gene on or off. They compared the results to healthy uterine cells.

They found that some parts of the tumor DNA had consistently more decorations and some had fewer. These epigenetic changes switched off certain genes that suppress tumors: KLF4, NDN and WT1. Understanding these epigenetic changes provides a possibility to switch the genes back on, helping the body stop the aggressive tumors from forming.

"In the past, epigenetic changes were difficult to study on a genome-wide basis," said Dr. Ting Wang, one of the authors of the study. "Our laboratory has pioneered several methods that make it possible to construct whole-genome methylation maps at single-nucleotide resolution. With these improved tools, we can now reveal epigenetic changes in cancers, which may well be just as significant as genetic mutations."

###

Notes for editors

The article is "Whole-Genome DNA Methylation Profiling Identifies Epigenetic Signatures of Uterine Carcinosarcoma," by Jing Li, Xiaoyun Xing, Daofeng Li, Bo Zhang, David G. Mutch, Ian S. Hagemann and Ting Wang (http://dx.doi.org/10.1016/j.neo.2016.12.009). It appears in Neoplasia, volume 19, issue 2 (February 2017), published by Elsevier.

This paper is available open access.

About Neoplasia

Neoplasia publishes the results of novel investigations in all areas of oncology research. Neoplasia features studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment.

About Elsevier

Elsevier is a global information analytics company that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a world-leading provider of information and analytics to professionals and business customers, in a wide range of industries. http://www.elsevier.com

Media Contact

Nikki Fullerton
[email protected]
31-020-485-3510
@elseviernews

http://www.elsevier.com

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

August 23, 2025
Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

August 23, 2025

Link Between Type 2 Diabetes and Heart Failure

August 23, 2025

New Jurassic Bittacidae Species Reveal Wing Spot Diversity

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Capturing a Split-Second Glimpse of Cellular Activity in Freeze-Frame

Children’s SARS-CoV-2 Antibodies Show Stronger FcR Binding

Link Between Type 2 Diabetes and Heart Failure

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.