• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Cancer-causing virus HTLV-1 changes DNA loops to ‘affect tens of thousands of genes’

Bioengineer by Bioengineer
June 27, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A human virus that causes a rare form of leukaemia increases the risk of disease by changing the way DNA loops inside our cells.

The research, published in the journal eLife, shows that the human leukaemia virus (HTLV-1) acts at a large number of sites across the human genome, disrupting the regulation of tens of thousands of genes.

According to the team, from Imperial College London and The European Bioinformatics Institute (EMBL-EBI), the findings show that the HTLV-1 changes the folding pattern of human DNA in infected cells. They explain that the resulting disruption of gene function increases the risk of leukaemia.

HTLV-1 is thought to infect more than 10 million people around the world. The virus can be transmitted through unprotected sex, blood transfusions, and from mother to baby via breast milk.

People can carry the virus for decades without symptoms, and 90 per cent of people may be unaware they are carrying it at all. However, an estimated 5-10 per cent of those infected may go on to develop an aggressive form of leukaemia or a progressive paralytic disease.

In the latest study, researchers looked at how HTLV-1 interacts with human DNA when it infects a host, focusing on its target: specialised white blood cells called T-cells.

Each human cell contains around two metres of DNA, neatly packaged into the nucleus. In order to fit, these twisting strands are tightly coiled and then wrapped around proteins, creating a densely packed genetic spaghetti structure called chromatin.

The chromatin is not randomly organised, but is folded into thousands of loops, which stick out from the main 'strand'. These loops expose certain regions of DNA to the cell's machinery that reads and copies DNA, enabling specific chunks of the genome to be more easily read and transcribed.

Recent research has shown that disrupting these existing loops, or creating new loops, alters the control of gene expression and may be linked to a host of diseases.

The research team isolated T-cells from HTLV-1-infected patients and analysed which regions of the DNA were altered. They found that the virus binds to a protein called CTCF, which is the key protein that forms normal loops in the human genome. As a result, the virus changes the structure of the loop and the activity of genes within it.

Professor Charles Bangham, Chair of immunology in the Department of Medicine at Imperial College London and lead author of the study, said: "Through binding to these specific sites in the genome, retroviruses like HTLV-1 can alter chromatin loops and disrupt how a number of important genes are regulated. This can lead to the abnormalities and disease, such as the leukaemia associated with HTLV-1."

The researchers explain that due to the large number of CTCF sites scattered throughout the human genome, viruses such as HTLV-1 have the potential to disrupt tens of thousands of genes in the human genome.

They add that the findings provide new insight into how viruses like HTLV-1 can alter the structure of the human genome, which can result in diseases such as cancer.

Ewan Birney, Director of the European Bioinformatics Institute (EMBL-EBI) and co-author, added: "This study illustrates that by combining wet lab and dry lab expertise, we can explore previously inaccessible biological processes.

"By integrating complex genomic data – in this case haplotype-resolved data – into our analysis, we have gained new insights into how the human T-cell leukaemia virus works. In turn, this could help us understand why certain patients experience such devastating symptoms, while others are asymptomatic."

###

Media Contact

Ryan O'Hare
[email protected]
207-594-2410
@imperialspark

http://www3.imperial.ac.uk/college/news

http://dx.doi.org/10.7554/eLife.36245

Share12Tweet7Share2ShareShareShare1

Related Posts

Exploring Wheat Heterosis Through Transcriptome Dynamics

September 2, 2025

New Tribe Identified in Tuberolachnini and Lachninae

September 2, 2025

Biochar from Prosopis farcta Boosts Quail Health, Neutralizes Aflatoxin

September 2, 2025

Chloroplast Genome Insights into Polygonatum Taxonomy

September 2, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Smart Sports Strategy: Deep Reinforcement Learning Insights

Proven Techniques for Isolating Mesenchymal Stem Cells

Advancing Qigong: Motion Capture and Feedback System

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.