• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Can metalens be commercialized at a fraction of the cost?

Bioengineer by Bioengineer
March 28, 2024
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Metalenses, nano-artificial structures capable of manipulating light, offer a technology that can significantly reduce the size and thickness of traditional optical components. Particularly effective in the near-infrared region, this technology holds great promise for various applications such as LiDAR which is called the ‘eyes of the self-driving car’, miniature drones, and blood vessel detectors. Despite its potential, the current technology requires tens of millions of won even for fabricating a metalens the size of a fingernail, posing a challenge for commercialization. Fortunately, a recent breakthrough shows promise of reducing its production cost by one thousandth of the price.

Wafer-scale manufacturing of a near-infrared metalens and a high-resolution image of onion epidermis captured using this technology

Credit: POSTECH

Metalenses, nano-artificial structures capable of manipulating light, offer a technology that can significantly reduce the size and thickness of traditional optical components. Particularly effective in the near-infrared region, this technology holds great promise for various applications such as LiDAR which is called the ‘eyes of the self-driving car’, miniature drones, and blood vessel detectors. Despite its potential, the current technology requires tens of millions of won even for fabricating a metalens the size of a fingernail, posing a challenge for commercialization. Fortunately, a recent breakthrough shows promise of reducing its production cost by one thousandth of the price.

 

A collaborative research team (POSCO-POSTECH-RIST Convergence Research Team), comprising Professors Junsuk Rho from the Department of Mechanical Engineering and the Department of Chemical Engineering and PhD candidates Seong-Won Moon and Joohoon Kim from the Department of Mechanical Engineering at Pohang University of Science and Technology (POSTECH), and Professor Heon Lee, Chanwoong Park, and Wonjoong Kim from the Department of Materials Science and Engineering at Korea University, has proposed two innovative methods for mass-producing metalenses and manufacturing them on large surfaces. Their research featured in Laser & Photonics Reviews, an international journal in optics and applied physics.

 

Photolithography, a process employed in crafting metalenses by imprinting patterns on silicon wafers using light, stands as a step in their fabrication. Typically, the resolution of light is inversely proportional to its wavelength, meaning that shorter wavelengths result in higher resolution, enabling the creation of finer and more detailed structures. In this research, the team opted for deep-UV photolithography, a process using shorter wavelengths of ultraviolet light.

 

The research team recently achieved the mass production of metalenses for visible light region using deep ultraviolet photolithography, as published in the international journal Nature Materials. However, challenges emerged as the existing method demonstrated low efficiency in the infrared region. To address this limitation, the team developed a material with a high refractive index and low loss for the infrared region. This material was integrated into the established mass production process, resulting in the successful creation of a sizable infrared metalens with a 1cm diameter on an 8-inch wafer. Notably, the lens boasts a remarkable numerical aperture (NA) of 0.53, highlighting its exceptional light-collecting capability along with high resolution approaching the diffraction limit. The cylindrical structure further renders it polarization-independent, ensuring excellent performance regardless of the direction of light vibration.

 

In the second approach, the team employed nano imprinting, a process allowing for the printing of nanostructures using a mold. This process utilized the nanoimprint technique know-how, accumulated through collaborative research with RIST. This endeavor proved successful as the team managed to mass-produce a metalens with a 5-millimeter diameter, comprised of about a hundred million rectangular nanostructures on a 4-inch wafer. Notably, this metalens exhibited impressive performance, boasting an aperture of 0.53. Its rectangular structure showed polarization-dependent properties, effectively responding to the direction of light vibration.

 

Building upon this achievement, the team integrated a high-resolution imaging system to observe real samples such as onion epidermis, validating the possibility of commercializing metalenses. This research holds significance as it overcomes the limitations of the traditional one-by-one metalens production process. It not only facilitates the creation of optical devices with both polarization-dependent and -independent characteristics tailored to specific applications but also reduces the production cost of metalenses by up to 1,000 times.

 

Professor Junsuk Rho who led the research remarked, “We have achieved the precise and rapid production of high-performance metalenses on a wafer-scale, reaching centimeter dimensions.” He added, “Our aim is for this research to expedite the industrialization of metalenses, fostering the advancement of efficient optical devices and optical technologies.”

The research was conducted with support from a program of POSCO’s Industry-Academic Integrated Research Center and the STEAM Research Program, the RLRC Program, Nanomaterial Technology Development Program, and the Future Material Discovery Program of the Ministry of Science and ICT.



Journal

Laser & Photonics Review

DOI

10.1002/lpor.202300929

Article Title

Wafer-Scale Manufacturing of Near-Infrared Metalenses

Article Publication Date

10-Jan-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    63 shares
    Share 25 Tweet 16
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.