• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, August 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Can animals count?

Bioengineer by Bioengineer
April 16, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

HONG KONG (16 April 2024)—A groundbreaking discovery that appears to confirm the existence of discrete number sense in rats has been announced by a joint research team from City University of Hong Kong (CityUHK) and The Chinese University of Hong Kong (CUHK).

Professor Yung Wing-ho, Chair Professor of Cognitive Neuroscience at CityUHK

Credit: City University of Hong Kong

HONG KONG (16 April 2024)—A groundbreaking discovery that appears to confirm the existence of discrete number sense in rats has been announced by a joint research team from City University of Hong Kong (CityUHK) and The Chinese University of Hong Kong (CUHK).

 

The findings offer a crucial animal model for investigating the neural basis of numerical ability and disability in humans, the Hong Kong-based researchers say.

 

This innovative study deployed a numerical learning task, brain manipulation techniques and AI modelling to tackle an ongoing debate about whether rats can count, says Professor Yung Wing-ho, Chair Professor of Cognitive Neuroscience at CityUHK, who collaborated with CUHK scientists at the Faculty of Medicine.

 

Their study, published in Science Advances, sheds light on the mechanisms underlying numerical ability, a cognitive ability fundamental to mathematical aptitude, which is a hallmark of human intelligence. The article is titled “Disparate processing of numerosity and associated continuous magnitudes in rats”.

 

Professor Yung, also Associate Dean of the Jockey Club College of Veterinary Medicine and Life Sciences at CityUHK, said the research team set out to minimise the influence of continuous magnitudes in numerical tests and conducted a meticulous quantitative analysis in the study to determine the respective contributions of numbers and magnitudes.

 

The team developed an algorithm to generate stimuli that enable animals to focus only on numbers and minimise other distracting factors.

 

“This will help us better understand how animals perceive and quantify numbers,” Professor Yung explains.

 

The team found that rats without any previous knowledge of numbers could develop a sense of numbers when trained with sounds representing two or three numbers. Despite the influence of continuous magnitudes, the rats consistently focused on the number of sounds when making choices for food rewards.

 

In addition, the study helps dissect the relationship between magnitude and numerosity processing. The researchers discovered that when they blocked a specific part of the rats’ brains, called the posterior parietal cortex, the rats’ ability to understand numbers was affected but not their sense of magnitude. This suggests that the brain has a specific area for dealing with numbers, Professor Yung continues.

 

The study not only solves a long-standing mystery about how brains handle numbers but also offers new insights into studying the specific neural circuits involved in number processing in animals and how genes are associated with mathematical ability. The findings from neural network modelling could have practical applications in the field of AI.

                                           

Professor Yung and Professor Ke Ya from the School of Biomedical Sciences at the CUHK Faculty of Medicine are the corresponding authors. Other contributing authors include Dr Liang Tuo, Dr Peng Rongchao, Mr Rong Kanglin and Ms Li Jiaxin from CUHK.

 



Journal

Science Advances

DOI

10.1126/sciadv.adj2566

Method of Research

Experimental study

Subject of Research

Animals

Article Title

Disparate processing of numerosity and associated continuous magnitudes in rats

Article Publication Date

21-Feb-2024

COI Statement

None

Share13Tweet8Share2ShareShareShare2

Related Posts

Decoding Black Garlic’s Chemistry and Health Benefits

Decoding Black Garlic’s Chemistry and Health Benefits

August 5, 2025
blank

Species Extinction Threatens the Unique Biodiversity of Macaronesia

August 5, 2025

Global Cyclospora Infection in HIV/AIDS Patients Reviewed

August 5, 2025

Lipase-Driven Creation of DHA-Enriched Structured Lipids

August 5, 2025

POPULAR NEWS

  • blank

    Neuropsychiatric Risks Linked to COVID-19 Revealed

    72 shares
    Share 29 Tweet 18
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Two Decades of Flow Cytometry Advancements

Decoding Black Garlic’s Chemistry and Health Benefits

Oxygen-Vacancy-Rich Samarium-Doped NiMoO4-CoMoO4 Supercapacitors

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.