• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

California Academy of Sciences researchers produce first-ever ‘family tree’ for aquarium-bred corals

Bioengineer by Bioengineer
November 14, 2022
in Biology
Reading Time: 5 mins read
0
Fluorescing Corals from Coral Spawning Lab
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

SAN FRANCISCO, CA (November 14, 2022) — Corals bred in public aquaria provide novel research opportunities and a healthy stock for outplanting into the wild, essential components of a thriving future for coral reef ecosystems, which support around 25% of all life in Earth’s oceans. But the long-term success of such efforts hinges in part on maintaining genetic diversity in aquarium-bred corals which leads to increased resilience to threats like ocean warming and acidification. In a study published today in Frontiers in Marine Science, a diverse team of Steinhart Aquarium biologists and researchers from the California Academy of Sciences’ Coral Spawning Lab produce the first-ever pedigree, or ‘family tree’, for corals bred in an aquarium and provide a list of best practices to maintain genetic diversity in aquarium-bred corals. 

Fluorescing Corals from Coral Spawning Lab

Credit: © California Academy of Sciences

SAN FRANCISCO, CA (November 14, 2022) — Corals bred in public aquaria provide novel research opportunities and a healthy stock for outplanting into the wild, essential components of a thriving future for coral reef ecosystems, which support around 25% of all life in Earth’s oceans. But the long-term success of such efforts hinges in part on maintaining genetic diversity in aquarium-bred corals which leads to increased resilience to threats like ocean warming and acidification. In a study published today in Frontiers in Marine Science, a diverse team of Steinhart Aquarium biologists and researchers from the California Academy of Sciences’ Coral Spawning Lab produce the first-ever pedigree, or ‘family tree’, for corals bred in an aquarium and provide a list of best practices to maintain genetic diversity in aquarium-bred corals. 

“Genetic diversity is what enables species to adapt to the myriad threats resulting from climate change,” says Academy Curator Rebecca Albright, PhD, who founded the Coral Spawning Lab, one of only a handful of facilities on Earth capable of successfully breeding corals. Albright’s work is an integral part of the Academy’s Hope for Reefs initiative, which is aimed at halting the decline of coral reefs in this generation. “For facilities like ours at the Coral Spawning Lab, ensuring each generation of corals is diverse allows us to conduct more robust experiments, which is a critical element of better understanding how corals can thrive on our changing planet. For organizations that do outplantings, increased genetic diversity translates to a greater chance of survival in the wild.”

For the study, the researchers conducted genetic analyses on the parents and offspring from two generations of Acropora hyacinthus corals spawned in the Coral Spawning Lab from 2019 and 2020. Based on the similarities between the DNA of the corals, the researchers were able to determine the relationships between individuals, such as parenthood or siblinghood. 

“Corals are broadcast spawners, meaning that multiple colonies release their sperm and eggs into the water simultaneously and there’s no way to immediately tell which coral parented which offspring,” says Academy coral researcher and study author Elora López-Nandam, PhD. “Surprisingly, we found that just two of the four colonies that spawned in 2019 parented 22 out of the 23 offspring that survived to their 2nd birthday. This leads to lots of new questions for us to explore how those two parents were so successful, the answers to which could help us better understand coral reproduction more broadly.” 

“While successful coral spawning events are a testament to how closely we have been able to mimic natural oceanic conditions, inevitably there are environmental pressures in aquarium settings that will differ from those in the wild and might be selecting for certain traits in each generation of coral,” López-Nandam says. Therefore, in addition to relatedness, the researchers also sifted through all 450 million DNA base pairs—if an organism’s genome is a book, then base pairs are the individual letters—from each of the sampled corals to find genetic differences between successive generations. 

In particular, the researchers found 887 points in the 450-million-letter long code that appear to be different in aquarium-bred corals when compared to those born in the wild. 

“Many of the differences we found were in gene pathways related to symbiosis with photosynthetic algae, which is how many corals get most of their energy,” López-Nandam says. “We hope to conduct future research in the Coral Spawning Lab to determine what exactly from an aquarium setting is driving these differences and how those genetic variations impact the overall fitness or health of aquarium-bred corals.”

Just as it takes a village to raise a child, the study authors note that it takes a unique cadre of experts to raise corals for such a study: from couscous-sized gamete bundles to Aspirin-sized polyps to grapefruit-sized spawning adults.

“This sort of collaboration between aquarium biologists and scientific researchers is rare,” says Steinhart Aquarium biologist and study author Lisa Larkin. “There are very few places around the world where all of those experts are housed in the same building, working together towards a shared goal. The Academy is unique in that we can propel this kind of research forward while also making a major impact on coral conservation.” 

Larkin and her colleagues in the Steinhart Aquarium spend months monitoring water quality and tracking the development of corals to ensure they are healthy enough to spawn each year. 

“Corals can be quite finicky. It takes them a lot of energy to reproduce and if they are stressed, they’ll put that energy elsewhere,” Larkin says. “It takes months of detailed attention to get them to the point where they are ready and able to spawn. 

But, Larkin adds, the end result more than justifies the effort. “You take care of a coral for an entire year and when they finally spawn you know you’ve done a great job. And since each spawn results in new opportunities for research such as this that is applicable for coral conservation, the payoff is well worth it.”

 

Media Contact: 
Skylar Knight, [email protected] 
Interviews with researchers and images available upon request.

###

About the California Academy of Sciences
The California Academy of Sciences is a renowned scientific and educational institution with a mission to regenerate the natural world through science, learning, and collaboration. Based in San Francisco’s Golden Gate Park, it is home to a world-class aquarium, planetarium, and natural history museum, as well as innovative programs in scientific research and environmental education—all under one living roof. Museum hours are 9:30 am – 5:00 pm Monday – Saturday, and 11:00 am – 5:00 pm on Sunday. Admission includes all exhibits, programs, and shows. For daily ticket prices, please visit www.calacademy.org or call (415) 379-8000 for more information.

About Research at the California Academy of Sciences
The Institute for Biodiversity Science and Sustainability at the California Academy of Sciences is at the forefront of efforts to regenerate the natural world through science, learning, and collaboration. Based in San Francisco, the Institute is home to more than 100 world-class scientists, state-of-the-art facilities, and nearly 46 million scientific specimens from around the world. The Institute also leverages the expertise and efforts of more than 100 international Associates and 450 distinguished Fellows. Through expeditions around the globe, investigations in the lab, and analysis of vast biological datasets, the Institute’s scientists work to understand the evolution and interconnectedness of organisms and ecosystems, the threats they face around the world, and the most effective strategies for ensuring they thrive into the future. Through deeply collaborative partnerships and innovative public engagement initiatives, they also guide critical conservation decisions worldwide, inspire and mentor the next generation of scientists, and foster responsible stewardship of our planet.



Journal

Frontiers in Marine Science

DOI

10.3389/fmars.2022.961106

Method of Research

Data/statistical analysis

Subject of Research

Animals

Article Title

Kinship and genetic variation in aquarium-spawned Acropora hyacinthus corals

Article Publication Date

14-Nov-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025
Sex Differences Unveiled in Hamster Hypertension Study

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025

AI Misuse in Stem Cell Research: A Comparative Study

November 3, 2025

Modular High-Throughput Tools Boost Chlamydomonas Chloroplast Research

November 3, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Antibody Therapy Reactivates Immune Response Against Pancreatic Cancer

AI-Driven Solutions for Landscape Preservation and Management

From Component Failure to Systemic Infrastructure Resilience

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.