• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Ca2+, the intercellular signal in arterioles

Bioengineer by Bioengineer
July 4, 2017
in Biology
Reading Time: 1 min read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Vasoconstriction must be balanced with vasodilation, particularly in the arterioles that supply tissues with blood. Endothelial cells protrude through holes in the internal elastic lamina in arterioles to make contact with vascular smooth muscle cells. Gap junctions are present at these sites where endothelial cells meet vascular smooth muscle cells. IP3 has been thought to be a signal that passes through these gap junctions to endothelial cells to mediate vasodilation. However, Garland et al. showed that it was Ca2+, rather than IP3, that entered vascular smooth muscle cells through voltage-gated Ca2+ channels, subsequently passed through gap junctions into endothelial cells, and initiated vasodilation mediated by endothelial cells. The magnitude of these Ca2+ signals in endothelial cells depended on IP3 receptors. These results resolve a long-standing controversy over how vascular smooth muscle cells communicate with endothelial cells to trigger feedback vasodilation.

###

Media Contact

C J Garland
[email protected]
01-865-281-119
@UniofOxford

http://www.ox.ac.uk/

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Alfalfa Cystatin Genes: Stress Response Insights

Alfalfa Cystatin Genes: Stress Response Insights

November 3, 2025
Drones and Lichens Team Up to Uncover Dinosaur Bones

Drones and Lichens Team Up to Uncover Dinosaur Bones

November 3, 2025

Risk Assessment of PAHs in Korean Sesame Oil

November 3, 2025

Sex Differences Unveiled in Hamster Hypertension Study

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Microbial Metabolites Prevent Urinary Catheter Encrustation

Alfalfa Cystatin Genes: Stress Response Insights

Hip Dislocation Risk in Cerebral Palsy Children: Study Findings

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.