• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home Headlines

‘Buying time’ for natural killer cells could enhance…

Bioengineer.org by Bioengineer.org
January 27, 2018
in Headlines, Health, Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Walter and Eliza Hall Institute of Medical Research

A team of researchers from Australia and France have uncovered new insights into how to prolong the lifespan of the body's disease-fighting natural killer (NK) cells.

The finding offers fresh clues about how best to harness NK cells to improve their disease-fighting function. This may have particular importance for cancer immunotherapy, 'buying more time' for NK cells to detect and destroy cancer cells.

The Melbourne team led by Dr Nick Huntington from the Walter and Eliza Hall Institute along with collaborators from Centre of Immunology in France, Professor Eric Vivier and Professor Sophie Ugolini, made the discovery by investigating factors that control NK cell function. The research was published this month in The Journal of Experimental Medicine.

Dr Huntington said the research revealed that a protein called BCL-2 was particularly important for controlling the reservoir of NK cells in our body. BCL-2 is a so-called 'pro-survival' protein that makes normal immune cells survive for extended periods.

"We have been very interested in understanding which factors control the lifespan of NK cells," Dr Huntington said. "We had previously identified a protein related to BCL-2, called MCL-1, which was critically required for all NK cell survival. This new study now shows that BCL-2 "teams up" with MCL-1 and both these proteins crucially determine NK cell survival in our body, and the majority of NK cells died following a reduction in the levels of BCL-2.

"Importantly, we were able to prevent NK cell death when BCL-2 levels were low by using a hormone-like protein or cytokine called IL-15. Boosting NK cell numbers by treating them with IL-15 may be a valuable new approach to boosting our immunity to viral infections or cancer. On the flipside, targeting this growth factor or BCL-2 could reduce NK cell numbers and offer potential therapies for immune disorders such as some types of autoimmune diseases, sepsis or graft versus host disease, a side effect of bone marrow transplants.

The team's research also identified that NK cells may be vulnerable to new medicines that inhibit BCL-2, which are also becoming widely tested as anti-cancer treatments.

"Our research has identified that adding cytokines could be a novel way to protect NK cells from the effect of BCL-2 inhibitors, maintaining healthy NK cell numbers in people undergoing cancer therapy," Dr Huntington said.

###

The research at the Walter and Eliza Hall Institute of Medical Research was supported by the National Health and Medical Research Council, the Harry J. Lloyd Charitable Trust, the Cancer Research Institute, Cancer Council Victoria, the Australian Research Council, the Leukemia and Lymphoma Society (US), the Menzies Foundation and the Victorian Government.

The Walter and Eliza Hall Institute is the research powerhouse of the Victorian Comprehensive Cancer Centre, an alliance of leading Victorian hospitals and research centres committed to controlling cancer.

For further information:
P: +61 475 751 811
E: [email protected]

Media Contact

Media Team
[email protected]
61-475-751-811
@WEHI_research

Home

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Revealing Sichuan Taimen’s Genome and Population Decline

September 27, 2025

CSNK1E Influences Hepatocellular Carcinoma Growth and Migration

September 27, 2025

Predicting Knee Replacement Wear Through Gait Analysis

September 27, 2025

Evaluating Salivary Biomarkers in Oral Cancer

September 27, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    82 shares
    Share 33 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revealing Sichuan Taimen’s Genome and Population Decline

CSNK1E Influences Hepatocellular Carcinoma Growth and Migration

Predicting Knee Replacement Wear Through Gait Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.