• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Bulb size matters: Uncovering the evolution of the plant kingdom’s doomsday preppers

Bioengineer by Bioengineer
March 9, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Cody Howard


GAINESVILLE, Fla. — Botanist Cody Coyotee Howard compares bulbs to living bunkers. With an underground stockpile of resources, bulbs can hunker down during disasters and spring up faster than other plants when conditions turn balmy.

The bigger the bulb, the more nutrients a plant has in times of need. But bulb size varies widely, even among related species, from the chive’s barely-there below-ground organ to softball-sized yellow onions. Howard wondered why.

His curiosity led to one of the first studies of the evolution and ecology of bulb size. In an analysis of more than 2,500 herbarium specimens, representing 115 species, he found two ranges of “optimum” bulb diameter that seem to be driven by natural selection. He also observed that larger bulbs tend to grow in warmer, more stable climates – perhaps because filling a bigger bunker requires favorable conditions over a longer time.

Why does bulb size matter? Besides contributing to a plant’s ability to survive, it’s a key trait in the garden business and agriculture. Horticulturists know that a plant will reliably flower when its bulb reaches a certain size. Bulb size is also a vital characteristic in crops such as garlic and onions.

“If we understand the evolution behind variation in bulb size, maybe we could manipulate settings to make it work more in our favor,” said Howard, a recent University of Florida doctoral graduate in biology. “We do eat these structures, so understanding their evolution is important for horticulture and agriculture. They clearly have a role in how these plants respond to their environment.”

Despite living underground, bulbs are not roots, but a reduced stem surrounded by swollen leaf bases.

Howard became interested in bulbs while working at the Huntington Botanical Gardens in Southern California, where he admired the beauty of exotic bulbs from around the world. As a graduate student, he focused on Ledebouria, an African group of bulbs, and began studying bulb evolution more broadly.

He recalled digging up two Ledebouria species growing side by side in Namibia. To his surprise, the smaller plant with thin leaves had the bigger bulb.

“It’s not possible to predict bulb size by looking at the above-ground portion of a plant,” he said. “And here you had two members of the same genus with different bulb sizes. I was curious about why that might be and wondered how I could look at that on a big scale. Then it was like, ‘Ah, collections!'”

Howard relied on plant specimens collected by scientists around the world to carry out his investigation of bulb size. But although he analyzed thousands of plants, he didn’t touch a single specimen. Thanks to the ongoing digitization of museum specimens, he could access all the plants he needed from his personal computer.

After drawing up a list of target species, he downloaded digitized specimens from the Global Biodiversity Information Facility, an open-access biological database. He searched specimens for ones that included bulbs and randomly selected a set from each species to measure virtually with ImageJ, an image processing program. Howard generated models of optimum bulb size using a free analytical software called R, and examined how climate data correlated with bulb size.

Instead of a single bell curve for bulb size, as he expected, the model showed two, suggesting that natural selection may favor two ranges of bulb diameter: peaking at about 2 and 4.5 centimeters.

Plants that grow leaves and flowers at separate times also tended to have bigger bulbs, possibly because they depend on their underground resources, rather than growing conditions, to fuel flower production, Howard said.

What began as a side project shined new light on the evolution and ecology of an important but often overlooked plant trait.

Plus, Howard said, “this project didn’t cost me anything. People have developed free, user-friendly platforms that make it easy to start answering broadscale questions.”

Howard’s adviser and study co-author Nico Cellinese, Florida Museum of Natural History associate curator of the UF Herbarium and informatics, said the study “epitomizes the importance of herbarium specimens in general, but also demonstrates how digitized, freely available material can inspire and spearhead studies that lead to interesting results and new perspectives in science.”

One plea Howard issued to fellow researchers was to include bulbs when collecting and curating plant specimens. In his search for eligible specimens, he turned up many herbarium sheets with leaves and flowers – but no bulb.

“It’s understandable. With trees and shrubs, you can just take a few clippings. Getting a bulb is a much more involved process,” he said. “But I wouldn’t have been able to do a study like this if someone hadn’t collected the entire specimen. We need these structures to be able to fully understand not only bulbous plants, but others with fascinating below-ground structures.”

###

Media Contact
Natalie van Hoose
[email protected]
352-273-1922

Original Source

https://www.floridamuseum.ufl.edu/science/uncovering-evolution-of-bulb-size/

Related Journal Article

http://dx.doi.org/10.1002/ece3.5996

Tags: AgricultureBiodiversityBioinformaticsBiologyEcology/EnvironmentEvolutionPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

New Study Uncovers Variation in Viral Risk Among Bat Species

November 3, 2025
16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

16th International Congress on Skin Ageing & Challenges 2025: Pioneering Innovation, Strategic Approaches, and Translational Advances

November 3, 2025

Wireless Neural Implant Smaller Than a Grain of Salt Monitors Brain Activity

November 3, 2025

Big Brains Demand Warm Bodies and Larger Offspring, New Study Finds

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in Dynamic Interface Engineering: Enhancing Nano-Charged Composite Polymer Electrolytes for Solid-State Lithium-Metal Batteries

Reviving Resilience: The Role of Algae in Coral Recovery Post-Bleaching

Short Web-Based Dance Boosts Health in Older Adults

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.